留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天然沸石对水中左氧氟沙星的吸附及其影响因素

杜悦矜 曾丽璇 黄家全 李美慧

杜悦矜, 曾丽璇, 黄家全, 李美慧. 天然沸石对水中左氧氟沙星的吸附及其影响因素[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 39-44. doi: 10.6054/j.jscnun.2020092
引用本文: 杜悦矜, 曾丽璇, 黄家全, 李美慧. 天然沸石对水中左氧氟沙星的吸附及其影响因素[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 39-44. doi: 10.6054/j.jscnun.2020092
DU Yuejin, ZENG Lixuan, HUANG Jiaquan, LI Meihui. Natural Zeolite's Adsorption of Levofloxacin in Water and the Effects of Environmental Factors[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(6): 39-44. doi: 10.6054/j.jscnun.2020092
Citation: DU Yuejin, ZENG Lixuan, HUANG Jiaquan, LI Meihui. Natural Zeolite's Adsorption of Levofloxacin in Water and the Effects of Environmental Factors[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(6): 39-44. doi: 10.6054/j.jscnun.2020092

天然沸石对水中左氧氟沙星的吸附及其影响因素

doi: 10.6054/j.jscnun.2020092
基金项目: 

国家科技重大专项项目 2017ZX07202004

详细信息
    通讯作者:

    曾丽璇,教授,Email:zenglx@scnu.edu.cn

  • 中图分类号: X131

Natural Zeolite's Adsorption of Levofloxacin in Water and the Effects of Environmental Factors

  • 摘要: 以天然沸石(NZ)作为去除水中左氧氟沙星(LEV)的吸附剂,通过静态吸附实验结合XRD、FT-IR和XRF等表征手段,针对NZ的结构及其对LEV的吸附效果、吸附机理进行探讨,并研究环境因素(包括腐殖酸和氨氮等)对吸附效果的影响.结果表明:XRD分析揭示了所用的NZ为斜发沸石;在LEV初始质量浓度为20 mg/L时,吸附达到饱和,最佳pH为6.5,吸附过程符合Langmuir模型,最大吸附容量为23.65 mg/g;吸附机理是离子交换和氢键作用;腐殖酸和氨氮的存在均使LEV的吸附量显著下降,推测主要是位点竞争和静电竞争抑制了NZ对LEV的吸附.
  • 图  1  LEV的结构

    Figure  1.  The structure of LEV

    图  2  NZ的XRD图谱和N2吸附-解吸等温线

    Figure  2.  The X-ray diffraction analysis and N2 adsorption-desorption isotherms of natural zeolites

    图  3  LEV、NZ及反应后NZ的FT-IR光谱

    Figure  3.  The FT-IR spectra of LEV, NZ and NZ after adsorption of LEV

    图  4  吸附前后NZ表面的Zeta电位

    Figure  4.  The zeta potential of NZ surface before and after adsorption

    图  5  ρ0(LEV)对吸附效果的影响

    Figure  5.  The effect of ρ0(LEV) on adsorption

    图  6  不同pH下LEV的形态和NZ对LEV的吸附量

    Figure  6.  The morphology of LEV and NZ's capacity of LEV adsorption under different pH conditions

    图  7  氨氮对NZ吸附LEV的影响

    Figure  7.  The effect of ammonia nitrogen on NZ's adsorption of LEV

    图  8  腐殖酸对吸附效果的影响

    Figure  8.  The effect of humic acid on adsorption

    表  1  NZ吸附LEV前后的氧化物组成

    Table  1.   The oxide compositions of NZ before and after LEV adsorption

    样品 氧化物的质量分数/%
    SiO2 Al2O3 Fe2O3 Na2O K2O CaO MgO
    吸附前的样品 74.86 20.15 1.44 0.57 1.69 0.34 0.49
    吸附后的样品 76.05 19.76 1.27 0.36 1.58 0.23 0.29
    下载: 导出CSV

    表  2  吸附等温线模型

    Table  2.   The adsorption isotherm model

    温度/K Langmuir拟合 Freundlich拟合
    qm/(mg·g-1) KL/(L·mg-1) R2 KF/(mg·g-1) 1/n R2
    288 19.26 0.301 0.998 6.598 0.277 0.953
    298 21.54 0.425 0.995 6.963 0.314 0.868
    308 23.65 0.506 0.997 8.187 0.301 0.850
    下载: 导出CSV

    表  3  不同吸附剂对LEV吸附能力的比较

    Table  3.   The comparison of LEV adsorption capacity between different adsorbents

    吸附剂 反应条件 吸附量/(mg·g-1)
    ρ(吸附剂)/(g·L-1) pH ρ0/(mg·L-1)
    氧化铈木片生物炭[12] 1.0 6.5 25~200 73.00
    累托石[6] 0.5 6.0 20~100 63.38
    铁柱撑蒙脱石[17] 0.5 6.8 20~100 48.61
    天然沸石 0.5 6.5 5~50 23.65
    木片生物炭[9] 10.0 6.5 50~150 7.72
    稻壳生物炭[9] 10.0 8.0 40~75 4.99
    负载Al2O3椰壳生物炭[20] 0.1 7.0 0.7~5.0 1.80
    针铁矿[7] 0.8 6.0 0.04~0.08 0.78
    下载: 导出CSV
  • [1] TONG C L, ZHOU X J, DUO Y. Occurrence and risk assessment of four typical fluoroquinolone antibiotics in raw and treated sewage and in receiving waters in Hangzhou, China[J]. Journal of Agricultural and Food Chemistry, 2011, 59(13):7303-7309. http://www.ncbi.nlm.nih.gov/pubmed/21630710
    [2] AMIT B, WILLIAM H, MARCIA M, et al. An overview of the modification methods of activated carbon for its water treatment applications[J]. Chemical Engineering Journal, 2013, 219:499-511. http://www.sciencedirect.com/science/article/pii/S1385894712016786
    [3] KULEYIN A. Removal of phenol and 4-chlorophenol by surfactant-modified natural zeolite[J]. Journal of Hazardous Materials, 2007, 144(12):307-315. http://europepmc.org/abstract/med/17112660
    [4] LYE J W P, SAMAN N, SHARUDDIN S S N, et al. Removal performance of tetracycline and oxytetracycline from aqueous solution via natural zeolites:an equilibrium and kinetic study[J]. CLEAN-Soil Air Water, 2017, 45(10):1600260/1-11. doi: 10.1002/clen.201600260
    [5] DE SOUSA D N R, INSA S, MOZETO A A, et al. Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites[J]. Chemosphere, 2018, 205:137-146. http://europepmc.org/abstract/MED/29689527
    [6] 杨凤, 罗继文, 张秋云, 等.累托石对左氧氟沙星的吸附研究[J].华南师范大学学报(自然科学版), 2019, 51(1):56-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnsfdx201901010

    YANG F, LUO J W, ZHANG Q U, et al. Adsorption of levofloxacin by rectorite[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(1):56-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnsfdx201901010
    [7] QIN X P, LIU F, WANG G C, et al. Adsorption of levofloxacin onto goethite:effects of pH, calcium and phosphate[J]. Colloids and Surfaces B:Biointerfaces, 2014, 116:591-596. http://smartsearch.nstl.gov.cn/paper_detail.html?id=4c1773a86fc08dc2a9197f8248ae7fd7
    [8] DOROTA K, PAULINA H, MALGORZATA F, et al. Zeolite properties improvement by chitosan modification-sorption studies[J]. Journal of Industrial and Engineering Chemistry, 2017, 52:187-196. http://www.sciencedirect.com/science/article/pii/S1226086X17301600
    [9] YI S Z, GAO B, SUM Y Y, et al. Removal of levofloxacin from aqueous solution using rice-husk and wood-chip biochars[J]. Chemosphere, 2016, 150:694-701. http://www.sciencedirect.com/science/article/pii/S0045653515305671
    [10] LYE J W P, SAMAN N, SHARUDDIN S S N, et al. Removal performance of tetracycline and oxytetracycline from aqueousn, solution via natural zeolites:an equilibrium and kinetic study[J]. Clean, 2017, 45(10):261-270. doi: 10.1002/clen.201600260
    [11] GLAUCIO J G, FERNANDA Z, CLEBER A, et al. Peru-chena, adsorption of acetic acid and methanol on H-Beta zeolite:an experimental and theoretical study[J]. Microporous and Mesoporous Materials, 2017, 252:17-28. http://www.sciencedirect.com/science/article/pii/S1387181117304110
    [12] AFZAL M Z, SUN X F, LIU J, et al. Enhancement of ciprofloxacin sorption on chitosan/biochar hydrogel beads[J]. Science of Total Environment, 2018, 639:560-569. http://www.ncbi.nlm.nih.gov/pubmed/29800849
    [13] NEUGEBAUER U, SZEGHALMI A, SCHMITT M, et al. Vibrational spectroscopic characterization of fluoroquinolones[J]. Spectrochim Acta A:Molecular and Biomolecular Spectroscopy, 2005, 61(7):1505-1517. http://www.ncbi.nlm.nih.gov/pubmed/15820884
    [14] ZHANG Z Y, LIU H J, WU L Y, et al. Preparation of amino-Fe(Ⅲ) functionalized mesoporous silica for synergistic adsorption of tetracycline and copper[J]. Chemosphere, 2015, 138:625-632. http://www.ncbi.nlm.nih.gov/pubmed/26218342?dopt=Abstract
    [15] XIE M J, ZENG L X, ZHANG Q Y, et al. Synthesis and adsorption behavior of magnetic microspheres based on chitosan/organic rectorite for low-concentration heavy metal removal[J]. Journal of Alloys and Compounds, 2015, 647:892-905. http://www.sciencedirect.com/science/article/pii/S0925838815301833
    [16] ZHAO Y P, GU X Y, GAO S X, et al. Adsorption of tetracycline (TC) onto montmorillonite:cations and humic acid effects[J]. Geoderma, 2012, 18:183-184. http://www.sciencedirect.com/science/article/pii/S0016706112001176
    [17] LIU Y N, DONG C X, WEI H, et al. Adsorption of levofloxacin onto an iron-pillared montmorillonite (clay mineral):kinetics, equilibrium and mechanism[J]. Applied Clay Science, 2015, 118:301-307. http://www.sciencedirect.com/science/article/pii/S0169131715301381
    [18] AI Y J, ZHAO C F, SUN L, et al. Coagulation mechanisms of humic acid in metal ions solution under different pH conditions:a molecular dynamics simulation[J]. Science of the Total Environment, 2020, 702:135072-135081. http://www.sciencedirect.com/science/article/pii/S0048969719350648
    [19] NOURRDINE C, SOUALAH A, MOHAMED C. Adsorption of phenol from aqueous solution onto zeolites Y modified by silylation[J]. Comptes Rendus Chimie, 2013, 16(3):222-228. http://www.sciencedirect.com/science/article/pii/S1631074812002536
    [20] SNEHA S L, NITIN A D, RAVIRAJ M K, et al. Kinetics and adsorption studies on the removal of levofloxacin using coconut coir charcoal impregnated with Al2O3 nanoparticles[J]. Desalination and Water Treatment, 2016, 57(50):23918-23926. doi: 10.1080/19443994.2016.1138330
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  260
  • HTML全文浏览量:  192
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-21
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回