留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

化合物半导体Cu2ZnSnS4太阳电池与人工光合作用制氢

江丰 李林涛 冯旷 王康 黄定旺

江丰, 李林涛, 冯旷, 王康, 黄定旺. 化合物半导体Cu2ZnSnS4太阳电池与人工光合作用制氢[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 1-9. doi: 10.6054/j.jscnun.2020086
引用本文: 江丰, 李林涛, 冯旷, 王康, 黄定旺. 化合物半导体Cu2ZnSnS4太阳电池与人工光合作用制氢[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 1-9. doi: 10.6054/j.jscnun.2020086
JIANG Feng, LI Lintao, FENG Kuang, WANG Kang, HUANG Dingwang. Compound Semiconductor Cu2ZnSnS4 Solar Cells and Artificial Photosynthesis for Hydrogen Production[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(6): 1-9. doi: 10.6054/j.jscnun.2020086
Citation: JIANG Feng, LI Lintao, FENG Kuang, WANG Kang, HUANG Dingwang. Compound Semiconductor Cu2ZnSnS4 Solar Cells and Artificial Photosynthesis for Hydrogen Production[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(6): 1-9. doi: 10.6054/j.jscnun.2020086

化合物半导体Cu2ZnSnS4太阳电池与人工光合作用制氢

doi: 10.6054/j.jscnun.2020086
基金项目: 

国家自然科学基金项目 61704060

详细信息
    通讯作者:

    江丰,研究员,Email:fengjiang@m.scnu.edu.cn

  • 中图分类号: O649.4

Compound Semiconductor Cu2ZnSnS4 Solar Cells and Artificial Photosynthesis for Hydrogen Production

  • 摘要: 太阳能作为一种取之不尽、用之不竭的清洁能源,将成为未来新能源的重要组成部分.目前人们除了利用太阳能光伏发电以外,还有利用仿生光合作用将太阳能转化为化学能、利用半导体光电极分解水制氢等方式.而在半导体材料中,低成本环保型的化合物半导体光伏材料(如Cu2ZnSnS4等)具有优良的光伏发电性能,同时也非常适合作为太阳光分解水制氢的材料.文章综述了近年来在Cu2ZnSnS4光伏电池及其太阳光分解水制氢领域的研究进展.
  • 图  1  不同预热时间制备CZTS薄膜的表面SEM图、电池界面TEM图及器件性能[17]

    注:A~D分别为金属前驱体经过0、40、80、150 min预热硫化得到的CZTS薄膜表面的SEM图; E为经150 min预热制备的CZTS基体组装的太阳能电池界面图; F为CZTS的部分截面EDX扫描图; G为不同预热时间制备的Al/ITO/ZnO/CdS/CZTS/Mo太阳能电池结构器件的性能参数.

    Figure  1.  The SEM, TEM and device performance curves of CZTS thin films under different preheating time lengths[17]

    图  2  Al/GZO/CdS/CZTS/Mo结构器件的截面SEM形貌及其太阳能电池性能[19]

    Figure  2.  The SEM morphology and solar cell performance of Al/GZO/CdS/CZTS/Mo devices[19]

    图  3  不同厚度In2S3的Al/ITO/ZnO/In2S3/CZTS/Mo器件在后续热处理前后的太阳能电池性能[22]

    Figure  3.  The performance of Al/ITO/ZnO/In2S3/CZTS/Mo devices with In2S3 of different thicknesses before and after post heating treatment[22]

    图  4  喷雾热解法制备Al/ITO/ZnO/CdS/CZTS/Mo结构太阳能电池的制备示意图及其器件的I-V曲线[24]

    Figure  4.  The preparation of solar cells Al/ITO/ZnO/CdS/CZTS/Mo structure through spray pyrolysis and the I-V curve of the device

    图  5  CZTS基光电阴极的光分解水制氢性能[25]

    注:A为在AM 1.5 G模拟太阳光照射下磷酸缓冲液(pH 6.5)中Pt/CZTS、Pt/CdS/CZTS、Pt/In2S3/CZTS及Pt/In2S3/CdS/CZTS光阴极的线性伏安扫描曲线; B和C分别为Pt/CdS/CZTS和Pt/In2S3/CdS/CZTS光阴极的HC-STH图、电流-时间曲线; D为Pt/In2S3/CdS/CZTS光阴极与NiOOH/BiVO4光阳极串联结构器件的工作原理结构示意图; E为线性伏安扫描曲线; F为分解水产氢/氧物质的量随时间变化图、电流-时间曲线(插图).

    Figure  5.  The performance of CZTS based photocathode in hydrogen generation through water photolysis[25]

    图  6  Pt-ZnS/CdS/CZTS结构的光阴极能带结构、产氢原理及其性能[26]

    Figure  6.  The photocathode band structure, hydrogen production principle and performance of Pt-ZnS/CdS/CZTS structure[26]

    图  7  Pt-HfO2/CdS/CZTS光阴极中不同厚度HfO2层的电流-时间曲线以及稳定性测试前后的线性伏安扫描曲线[27]

    注:A~D为电流-时间曲线,HfO2层厚度分别为0、3、6、10 nm; E~H为HfO2层稳定性测试前后的线性伏安扫描曲线,HfO2层厚度分别为0、3、6、10 nm.

    Figure  7.  The current-time curves of HfO2 layers of different thicknesses in Pt-HfO2/CdS/CZTS photocathode and the linear voltammetric scanning curves before and after stability test[27]

    图  8  Pt-HfO2(6 nm)/CdS/CZTS与BiVO4串联器件及其产氢性能[27]

    注:A为线性伏安扫描曲线; B为时间-电流曲线图; C为气相色谱法检测的产氢物质的量随时间增长图; D为光照下分解水的简图; E为在pH 6.5的磷酸缓冲液中用AM 1.5 G太阳光模拟系统光照产氢的实物图.

    Figure  8.  The device of Pt-HfO2(6 nm)/CdS/CZTS and BiVO4series and its performance of hydrogen production[27]

    图  9  CdS/CZTS、Pt-CdS/CZTS和MoSx-CdS/CZTS光阴极的光电化学性能[28]

    Figure  9.  The photoelectrochemical properties of CdS/CZTS, Pt-CdS/CZTS and MoSx-CdS/CZTS photocathodes[28]

    图  10  不同修饰层GeSe光阴极的光电化学性能[29]

    注:A~C为线性伏安扫描曲线,光阴极分别为Pt-GeSe、Pt-CdS/GeSe、Pt-TiO2/CdS/GeSe; D为Pt-TiO2/CdS/GeSe光阴极的HC-STH图; E为GeSe、CdS/GeSe、TiO2/CdS/GeSe光阴极的开启电压随光强的变化.

    Figure  10.  The photoelectrochemical properties of GeSe photocathodes with different modified layers[29]

  • [1] ANTUNEZ D P, BISHOP D M, LUO Y, et al. Efficient kesterite solar cells with high opencircuit voltage for applications in powering distributed devices[J]. Nature Energy, 2017, 2:884-890.
    [2] GREEN M A. Commercial progress and challenges for photovoltaics[J]. Nature Energy, 2016, 1:15015/1-4.
    [3] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238:37-38.
    [4] WALTER M G, WARREN E L, MCKONE J R. Solar water splitting cells[J]. Chemical Reviews, 2010, 110:6446-6473. doi: 10.1021/cr1002326
    [5] LI Z S, LUO W J, ZHANG M L, et al. Photoelectrochemical cells for solar hydrogen production:current state of promising photoelectrodes, methods to improve their properties, and outlook[J]. Energy and Environmental Science, 2013, 6(2):347-370. http://pubs.rsc.org/en/content/articlepdf/2013/ee/c2ee22618a
    [6] MORIYA Y, TAKATA T, DOMEN K. Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation[J]. Coordination Chemistry Reviews, 2013, 257(13/14):1957-1969.
    [7] HISATOMI T, KUBOTA J, DOMEN K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting[J]. Chemical Society Reviews, 2014, 43(22):7520-7535. doi: 10.1007/978-3-319-13800-8_1.pdf
    [8] LIU Y, ZHAO J, LI Z, et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells[J]. Nature Communications, 2014, 5(2):1-4. http://www.ncbi.nlm.nih.gov/pubmed/25382026
    [9] JARIWALA D, SANGWAN V K, LAUHON L J, et al. Emerging device applications for semiconducting two- dimensional transition metal dichalcogenides[J]. ACS Nano, 2014, 8(2):1102-1120. doi: 10.1021/nn500064s
    [10] YAMAMOTO K, SAKAKIMA H, OGAWA Y, et al. Fabrication of CdS/CdTe solar cells with transparent p-type conductive BaCuSeF back contact[J]. Japanese Journal of Applied Physics, 2015, 54(8):08KC01/1-4.
    [11] JACKSON P, WUERZ R, HARISKOS D, et al. Effects of heavy alkali elementsin Cu(In, Ga)Se2 solar cells with efficiencies up to 22.6%[J]. Physica Status Solidi-Rapid Research Letters, 2016, 10(8):583-586.
    [12] CHAWLA R, SINGHAL P, GARG A K. Design and analysis of multi junction solar photovoltaic cell with graphene as an intermediate layer[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(6):3693-3702. http://www.ingentaconnect.com/contentone/asp/jnn/2020/00000020/00000006/art00043
    [13] YI J. New generation multijunction solar cells for achieving high efficiencies[J]. Current Photovoltaic Research, 2018, 6(2):31-38. http://www.dbpia.co.kr/Journal/ArticleDetail/NODE07470269
    [14] YAN C, HUANG J, SUN K, et al. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment[J]. Nature Energy, 2018, 3(9):764-772. http://www.nature.com/articles/s41560-018-0206-0
    [15] WANG W, WINKLER M T, GUNAWAN O, et al. Device characteristics of CZTS Se thin-film solar cells with 12.6% efficiency[J]. Advanced Energy Materials, 2014, 4(7):1301465/1-4.
    [16] GERSHON T, LEE Y S, ANTUNEZ P, et al. Photovoltaic materials and devices based on the alloyed kesterite absorber (AgxCu1-x)(2)ZnSnSe4[J]. Advanced Energy Materials, 2016, 6(10):1502468/1-7.
    [17] JIANG F, IKEDA S, HARADA T, et al. Pure sulfide Cu2ZnSnS4 thin film solar cells fabricated by preheating an electrodeposited metallic stack[J]. Advanced Energy Materials, 2014, 4(7):1301381/1-6.
    [18] JIANG F, IKEDA S, HARADA T, et al. Fabrication of an efficient electrodeposited Cu2ZnSnS4-based solar cells with more than 6% conversion efficiency using a sprayed Ga-doped ZnO window layer[J]. RSC Advances, 2014, 4:24351-24355.
    [19] JIANG F, IKEDA S, TANG Z, et al. Impact of alloying duration of an electrodeposited Cu/Sn/Zn metallic stack on properties of Cu2ZnSnS4 absorbers for thin-film solar cells[J]. Progress In Photovoltaics, 2015, 23(12):1884-1895.
    [20] JIANG F, SHEN H L. Fabrication and photovoltaic properties of Cu2ZnSnS4/i-a-Si/n-a-Si thin film solar cells[J]. Applied Surface Science, 2013, 280:138-143. http://www.sciencedirect.com/science/article/pii/S0169433213008295
    [21] JIANG F, SHEN H, JIAO J. Effect of the thickness on the optoelectronic properties of SnS films and photovoltaic performance of SnS/i-a-Si/n-a-Si solar cells[J]. Applied Physics A:Materials Science & Processing, 2014, 117(4):2167-2173.
    [22] JIANG F, OZAKI C, HARADA T, et al. Effect of indium doping on surface optoelectrical properties of Cu2ZnSnS4 photoabsorber and interfacial/photovoltaic performance of cadmium free In2S3/Cu2ZnSnS4 heterojunction thin film solar cell[J]. Chemistry of Materials, 2016, 28(10):3283-3291.
    [23] JIANG F, LI S, OZAKI C, et al. Co-electrodeposited Cu2ZnSnS4 thin film solar cell and Cu2ZnSnS4 solar cell-BiVO4 tandem device for unbiased solar water splitting[J]. Solar RRL, 2018, 2(3):1700205/1-6.
    [24] NGUYEN T H, SEPTINA W, FUJIKAWA S, et al. Cu2ZnSnS4 thin film solar cells with 5.8% conversion efficiency obtained by a facile spray pyrolysis technique[J]. RSC Advances, 2015, 5:77565-77571.
    [25] JIANG F, HARADA T, KUANG Y B, et al. Pt/In2S3/CdS/Cu2ZnSnS4 thin film as an efficient and stable photocathode for water reduction under sunlight radiation[J]. Journal of the American Chemical Society, 2015, 137(42):13691-13697.
    [26] WANG K, HUANG D W, YU L, et al. Environmentally friendly Cu2ZnSnS4-based photocathode modified with a ZnS protection layer for efficient solar water splitting[J]. Journal of Colloid and Interface Science, 2019, 536:9-16.
    [27] HUANG D W, WANG K, YU L, et al. Over 1% efficient unbiased stable solar water splitting based on a sprayed Cu2ZnSnS4 photocathode protected by a HfO2 photocorrosion-resistant film[J]. ACS Energy Letters, 2018, 3(8):1875-1881.
    [28] FENG K, HUANG D W, LI L T, et al. MoSx-CdS/Cu2ZnSnS4-based thin film photocathode for solar hydrogen evolution from water[J]. Applied Catalysis B:Environmental, 2020, 268:118438/1-9.
    [29] WANG K, HUANG D W, YU L, et al. Promising GeSe nanosheet-based thin-film photocathode for efficient and stable overall solar water splitting[J]. ACS Catalysis, 2019, 9(4):3090-3097.
    [30] FENG K, CAI Z, HUANG D, et al. Near-infrared-driven water splitting for hydrogen evolution from Cu2ZnSnS4-based photocathode by the application of upconversion nanoparticles[J]. Sustainable Energy and Fuels, 2020, 4(6):2669-2674.
  • 加载中
图(10)
计量
  • 文章访问数:  440
  • HTML全文浏览量:  315
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-07
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回