留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

载体晶粒尺寸对CuY催化剂性能的影响

王玉春 刘赵荣 谭超 孙鸿 李忠

王玉春, 刘赵荣, 谭超, 孙鸿, 李忠. 载体晶粒尺寸对CuY催化剂性能的影响[J]. 华南师范大学学报(自然科学版), 2020, 52(4): 37-42. doi: 10.6054/j.jscnun.2020058
引用本文: 王玉春, 刘赵荣, 谭超, 孙鸿, 李忠. 载体晶粒尺寸对CuY催化剂性能的影响[J]. 华南师范大学学报(自然科学版), 2020, 52(4): 37-42. doi: 10.6054/j.jscnun.2020058
WANG Yuchun, LIU Zhaorong, TAN Chao, SUN Hong, LI Zhong. The Effect of the Support Grain Size on the Catalytic Performance of the CuY Catalyst[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(4): 37-42. doi: 10.6054/j.jscnun.2020058
Citation: WANG Yuchun, LIU Zhaorong, TAN Chao, SUN Hong, LI Zhong. The Effect of the Support Grain Size on the Catalytic Performance of the CuY Catalyst[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(4): 37-42. doi: 10.6054/j.jscnun.2020058

载体晶粒尺寸对CuY催化剂性能的影响

doi: 10.6054/j.jscnun.2020058
基金项目: 

山西省基础研究计划项目 201701D221045

过程分析与控制四川省高校重点实验室项目 2015003

运城学院应用基础研究项目 CY-2018018

运城学院博士科研启动项目 YQ-2019024

详细信息
    通讯作者:

    王玉春,副教授,Email:wyc0104@126.com.cn

  • 中图分类号: O643

The Effect of the Support Grain Size on the Catalytic Performance of the CuY Catalyst

  • 摘要: 以偏铝酸钠和硅溶胶为主要原料,采用无导向剂法制备了不同粒径的分子筛NaY, 利用离子交换反应, 采用NH4NO3溶液将NaY转化为NH4Y分子筛.以NH4Y为载体,通过蒸气浸渍法制备了CuY催化剂.采用XRD、TEM、BET和XPS等技术对催化剂进行了表征分析.将CuY催化剂应用于甲醇氧化羰基化合成碳酸二甲酯(DMC)的反应,考察了载体粒径对催化活性的影响.结果表明:载体晶粒影响了孔结构,尤其是间隙孔的形成,进而影响催化剂的催化活性.当粒径约500 nm时,晶粒间隙孔恰好有利于DMC的形成,此时CuY催化剂表现出最优的催化活性,DMC基于甲醇的时空收率、甲醇转换率、DMC选择性分别为273.1 mg/(g·h)、6.5%、72.1%.
  • 图  1  不同NaY分子筛的XRD谱

    注:NaY-0、NaY-6、NaY-12、NaY-24、NaY-36分别为陈化0、6、12、24、36 h制备的分子筛,下同.

    Figure  1.  The XRD patterns of different NaY zeolites

    图  2  不同NaY分子筛的TEM图

    Figure  2.  The TEM images of different NaY zeolites

    图  3  不同NaY分子筛的EDS能谱

    Figure  3.  The EDS patterns of different NaY zeolites

    图  4  不同NaY分子筛的N2吸附-脱附等温曲线和孔径分布

    注:为了避免遮挡,A图中除NaY-O曲线外, 其余曲线均纵向平移.

    Figure  4.  The N2 adsorption isotherms and the pore size distribution of different NaY zeolites

    图  5  不同CuY催化剂的XRD谱

    Figure  5.  The XRD patterns of different CuY catalysts

    图  6  不同CuY催化剂的XPS谱

    Figure  6.  The XPS spectra of different CuY catalysts

    图  7  DMC基于甲醇的时空收率选择性及甲醇的转化率

    Figure  7.  The space-time yield and selectivity of DMC based on methanol and methanol conversion

    表  1  全有全无分配法的结果

    Table  1.   The result of all-or-nothing assignment method

    载体样品 粒径/nm 相对结晶度/%
    NaY-0 67.7 100
    NaY-6 62.0 101
    NaY-12 61.5 104
    NaY-24 56.0 122
    NaY-36 51.8 80
    下载: 导出CSV

    表  2  不同NaY分子筛的比表面积和孔结构参数

    Table  2.   The surface area and pore-structure parameters of different NaY zeolites

    载体样品 BET/(m2·g-1) Vmicro/(cm3·g-1) Vmeso/(cm3·g-1) Dmicro/nm Dmeso/nm
    NaY-0 697.6 0.31 0.40 0.55 2.24
    NaY-6 704.0 0.30 0.56 0.49 3.18
    NaY-12 710.7 0.31 0.77 0.54 4.27
    NaY-24 718.3 0.31 0.79 0.48 4.42
    NaY-36 722.2 0.28 0.45 0.78 2.55
    下载: 导出CSV
  • [1] HU Z, ZHANG H B, WANG L, et al. Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction[J]. Catalysis Science & Technology, 2014, 4(9):2891-2895. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=254505ade0d94a3000dfc23bc1551933
    [2] ZHAO Y, LIU Z, LI W, et al. Synthesis, characterization, and catalytic performance of high-silica Y zeolites with different crystallite size[J]. Microporous and Mesoporous Materials, 2013, 167:102-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8b598ada54735816f7e95de495a47f57
    [3] 杨槐馨, 马静红, 李瑞丰, 等.铁络合物/八面沸石催化剂中沸石主体的纳米效应[J].催化学报, 2002, 23(1):51-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb200201012

    YANG H X, MA J H, LI R F, et al. Nano-effect of zeolite host in faujasite zeolite-encapsulated iron phenanthroline complex catalyst[J]. Chinese Journal of Catalysis, 2002, 23(1):51-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb200201012
    [4] WANG Y C, ZHENG H Y, LI Z. Investigation of the interaction between Cu(acac)2 and NH4Y in the preparation of chlorine-free CuY catalysts for oxidative carbonylation of methanol to a fuel additive[J]. RSC Advances, 2015, 5:102323-102331. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=24509af22ae98f2e9675b225dbd088da
    [5] NAM J K, CHOI M J, CHO D H, et al. The influence of support in the synthesis of dimethyl carbonate by Cu-based catalysts[J]. Journal of Molecular Catalysis A:Chemical, 2013, 370:7-13.
    [6] WANG Y C, ZHENG H Y, LI Z. Effect of NH4+ exchange on CuY catalyst for oxidative carbonylation of methanol[J]. Chinese Journal of Catalysis, 2016, 37(8):1403-1412. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201608027
    [7] KELLER N, REBMANN G, KELLER V. Catalysts, mechanisms and industrial processes for the dimethylcarbonate synthesis[J]. Journal of Molecular Catalysis A:Chemical, 2010, 317(1/2):1-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=15fcba97d2adf643d576a6fcc7ae7605
    [8] HUANG S Y, ZHANG J J, WANG Y J, et al. Insight into the tunable CuY catalyst for diethyl carbonate by oxycarbonylation:preparation methods and precursors[J]. Industrial and Engineering Chemistry Research, 2014, 53(14):5838-5845.
    [9] 杨洋.小晶粒Y型分子筛的无导向剂合成研究[D].大连: 大连理工大学, 2013.

    YANG Y. Synthesis of small particle size Y zeolite without guide agent[D]. Dalian: Dalian University of Technology, 2013.
    [10] 王玉春.固相反应法制备完全无氯CuY催化剂及甲醇氧化羰基化催化性能研究[D].太原: 太原理工大学, 2016.

    WANG Y C. Preparation of the chlorine-free CuY catalyst by solid state reaction and heterogeneous catalysis in the oxidative carbonylation of methanol[D]. Taiyuan: Taiyuan University of Technology, 2016.
    [11] SILVA B, FIGUEIREDO H, SOARES O, et al. Evaluation of ion exchange-modified Y and ZSM5 zeolites in Cr(VI) biosorption and catalytic oxidation of ethyl acetate[J]. Applied Catalysis B:Environmental, 2012, 117/118:406-413. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5a03cb9d864ed6f3d52696e37988d90c
    [12] 徐如人, 庞文琴, 丁吉红, 等.分子筛与多孔材料化学[M].北京:科学出版社, 2004.

    XU R R, PANG W Q, DING J H, et al. Chemistry of molecular sieves and porous materials[M]. Beijing:Science Press, 2004.
    [13] 李文, 周晋, 邢伟, 等. HY分子筛为模板合成的微孔炭及其电化学电容性能[J].物理化学学报, 2011, 27(3):620-626. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201103017

    LI W, ZHOU J, XING W, et al. Preparation of microporous carbon using a zeolite HY template and its capacitive performance[J]. Acta Physico-Chimica Sinica, 2011, 27(3):620-626. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201103017
    [14] PARK D H, KIM S S, WANG H, et al. Selective petroleum refining over a Zeolite catalyst with small intracrystal mesopores[J]. Angewandte Chemie, 2009, 121(41):7781-7784. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/ange.200901551
    [15] NIKEN T, ABDUL R M, SUBHASH B. Nanocrystalline zeolite Y:synthesis and characterization[J]. IOP Conference Series:Materials Science and Engineering, 2011, 17(1):012030/1-7.
    [16] LI D, HUANG Y, RATINAC K R, et al. Zeolite crystallization in crosslinked chitosan hydrogels:crystal size control and chitosan removal[J]. Microporous and Mesoporous Materials, 2008, 116(1/2/3):416-423.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  349
  • HTML全文浏览量:  338
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-28
  • 刊出日期:  2020-08-25

目录

    /

    返回文章
    返回