留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合脉冲控制阶梯型多态量子系统的转移通道

张钻娴 REHMANFazal 陈志文 黄巍

张钻娴, REHMANFazal, 陈志文, 黄巍. 复合脉冲控制阶梯型多态量子系统的转移通道[J]. 华南师范大学学报(自然科学版), 2020, 52(4): 31-36. doi: 10.6054/j.jscnun.2020057
引用本文: 张钻娴, REHMANFazal, 陈志文, 黄巍. 复合脉冲控制阶梯型多态量子系统的转移通道[J]. 华南师范大学学报(自然科学版), 2020, 52(4): 31-36. doi: 10.6054/j.jscnun.2020057
ZHANG Zuanxian, REHMAN Fazal, CHEN Zhiwen, HUANG Wei. Population Transfer Manipulated by Composite Pulse Sequences in the Ladder-Type Multi-State Quantum System[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(4): 31-36. doi: 10.6054/j.jscnun.2020057
Citation: ZHANG Zuanxian, REHMAN Fazal, CHEN Zhiwen, HUANG Wei. Population Transfer Manipulated by Composite Pulse Sequences in the Ladder-Type Multi-State Quantum System[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(4): 31-36. doi: 10.6054/j.jscnun.2020057

复合脉冲控制阶梯型多态量子系统的转移通道

doi: 10.6054/j.jscnun.2020057
基金项目: 

国家自然科学基金联合基金项目 U1830111

详细信息
    通讯作者:

    黄巍,讲师,Email:weihuang@m.scnu.edu.cn

  • 中图分类号: O562

Population Transfer Manipulated by Composite Pulse Sequences in the Ladder-Type Multi-State Quantum System

  • 摘要: 提出了利用复合脉冲在阶梯型多态量子系统中操控量子态演化和粒子数相干转移的方法.首先通过Morris-Shore变换,借助二能级传播算子描述多态量子系统的演化.然后利用增加脉冲序列数且单个脉冲的相位可控的技术,抑制额外的转移通道,实现高效率高鲁棒性的量子态操控和粒子数转移.最后通过数值模拟研究了额外通道和转移通道的拉比频率比、脉冲面积的变化、单光子失谐偏离零点等因素对转移效率的影响.结果表明:常被用于二能级量子系统的复合脉冲操控方法也可被应用于多态量子系统.通过增加脉冲序列数,可有效减小相关参数的扰动,保持高效率的粒子数转移.多脉冲序列复合脉冲的技术可以解决偏振不纯、激光频率不纯、控制参数扰动等造成的量子态操控效率降低等问题.研究结果对构造量子门、量子模拟等相关研究具有重要意义.
  • 图  1  系统结构示意图

    注:图A为三能级阶梯型量子系统, 图B为利用Morris-Shore转换后的二能级和孤立态的系统.

    Figure  1.  The schematic diagram of system structure

    图  2  复合脉冲的相位

    Figure  2.  The composite pulse phase

    图  3  不同脉冲序列下转移概率P随混合角θ的变化

    注:图中1、3、5分别代表单脉冲、三脉冲以及五脉冲的情况,下同.

    Figure  3.  The variation of transition probability P with mixing angle θ under different pulse sequences

    图  4  不同脉冲序列下转移概率随拉比频率比的变化

    Figure  4.  The change of transfer probability with the ratio of Rabi frequency under different pulse sequences

    图  5  不同脉冲面积下转移概率随混合角的变化

    注:图中π/2、3π/4、π分别代表脉冲面积.

    Figure  5.  The change of transition probability with mixing angle under different pulse areas

    图  6  不同失谐量下转移概率随混合角的变化

    注:黑线、红线、蓝线分别代表失谐量Δ=0.1/T、0.2/T、0.5/T的情况.

    Figure  6.  The change of transition probability with mixing angle under different detuning degrees

  • [1] FREEMAN R. Spin Choreography[M]. Oxford: Spektrum, 1997.
    [2] HÄFFNER H, ROOS C F, BLATT R. Quantum computing with trapped Ions[J]. Physics Reports, 2008, 469(4):155-203. doi: 10.1016/j.physrep.2008.09.003
    [3] IVANOV S S, VITANOV N V. Scalable uniform construction of highly conditional quantum gates[J]. Physical Review A, 2011, 84(2):022319/1-5.
    [4] TOROSOV B T, VITANOV N V. Smooth composite pulses for high-fidelity quantum Information processing[J]. Physical Review A, 2011, 83(5):053420/1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ebf39d6fca23424502c0cb41b2bed4df
    [5] IVANOV S S, VITANOV N V. High-fidelity local addressing of trapped Ions and Atoms by composite sequences of laser pulses[J]. Optics Letters, 2011, 36(7):1275-1277. doi: 10.1364/OL.36.001275
    [6] TOROSOV B T, GUÉRIN S, VITANOV N V. High-fidelity adiabatic passage by composite sequences of chirped pulses[J]. Physical Review Letters, 2011, 106(23):233001/1-4.
    [7] GENOV G T, TOROSOV B T, VITANOV N V. Optimized control of multistate Quantum systems by composite pulse sequences[J]. Physical Review A, 2011, 84(6):063413/1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c232cec3746640f088548749556021ee
    [8] GENOV G T, VITANOV N V. Dynamical suppression of unwanted Transitions in multistate quantum systems[J]. Physical Review Letters, 2013, 110(13):133002/1-5.
    [9] VITANOV N V. Arbitrarily accurate narrowband compo-site pulse sequences[J]. Physical Review A, 2011, 84(6):065404/1-4.
    [10] HIROSE M, CAPPELLARO P, AIELLO C D. Composite-pulse magnetometry with a solid-state quantum sensor[J]. Nature Communications, 2013, 4(1):1419-1424. doi: 10.1038/ncomms2375
    [11] SCHERER N F, CARLSON R J, MATRO A, et al. Fluorescence-detected wave packet interferometry:time resolved molecular spectroscopy with sequences of femtose-cond phase-locked pulses[J]. The Journal of Chemical Physics, 1991, 95(3):1487-1511. doi: 10.1063/1.461064
    [12] BUTTS D L, KOTRU K, KINAST J M, et al. Efficient broadband Raman pulses for large-area atom interferometry[J]. Journal of the Optical Society of America B, 2013, 30(4):922-927. doi: 10.1364/JOSAB.30.000922
    [13] TOROSOV B T, VITANOV N V. High-fidelity error-resilient composite phase gates[J]. Physical Review A, 2014, 90(1):124-129.
    [14] YAN D, CUI C L, ZHANG M, et al. Coherent population transfer and quantum entanglement generation involving a Rydberg state by stimulated Raman adiabatic passage[J]. Physical Review A, 2011, 84(4):043405/1-6.
    [15] GULDE S, RIEBE M, LANCASTER G P T, et al. Implementation of the Deutsch-Jozsa algorithm on an Ion-trap quantum computer[J]. Nature, 2003, 421(6918):48-50. doi: 10.1038/nature01336
    [16] SCHMIDT-KALER F, HÄFFNER H, RIEBE M, et al. Realization of the Cirac-Zoller Controlled-NOT quantum gate[J]. Nature, 2003, 422:408-411. doi: 10.1038/nature01494
    [17] TIMONEY N, ELMAN V, GLASER S, et al. Error-resistant single qubit gates with trapped ions[J]. Physical Review A, 2006, 77(5):052334/1-7.
    [18] JONES J A. Nested composite NOT gates for quantum computation[J]. Physics Letters A, 2013, 377(40):2860-2862. doi: 10.1016/j.physleta.2013.08.040
    [19] 黄巍, 张善超, 颜辉, 等.玻色-爱因斯坦凝聚体量子模拟实验技术进展[J].华南师范大学学报(自然科学版), 2018, 50(5):19-24. doi: 10.6054/j.jscnun.2018094

    HUANG W, ZHANG S C, YAN H, et al. Laboratory techniques of quantum simulation using Bose-Einstein condensates[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(5):19-24. doi: 10.6054/j.jscnun.2018094
    [20] REHMAN F, LI J Z, CHEN Z W, et al. Production of 87Rb Bose-Einstein condensate with a simple evaporative cooling method[J]. Chinese Physics Letters, 2020, 37(3):036701/1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwlkb-e202003012
    [21] XU J, DU Y X, HUANG W. Improving coherent population transfer via a stricter adiabatic condition[J]. Physical Review A, 2019, 100(2):023848/1-5.
    [22] BRUNS A, GENOV G T, HAIN M, et al. Experimental dem-onstration of composite stimulated Raman adiabatic passage[J]. Physical Review A, 2018, 98(5):053413/1-9.
    [23] ZHANG Q, CHEN X, GUÉRY-ODELIN D. Reverse engineering protocols for controlling spin dynamics[J]. Scientific Reports, 2017, 7(1):15814/1-9.
    [24] GENOV G T, SCHRAFT D, HALFMANN T. Universal composite pulses for efficient population inversion with an arbitrary excitation profile[J]. Physical Review A, 2020, 101(1):013827/1-9.
    [25] KANG Y H, CHEN Y H, SHI Z C, et al. Pulse design for multilevel systems by utilizing Lie transforms[J]. Physical Review A, 2018, 97(3):033407/1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=04bca4bae4a7dec85174eee5d7238156
  • 加载中
图(6)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  276
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-22
  • 刊出日期:  2020-08-25

目录

    /

    返回文章
    返回