留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短程相互作用对准粒子相对论动力学的影响

李志 胡玥 郭政鑫 陈李梅 黄育蕾

李志, 胡玥, 郭政鑫, 陈李梅, 黄育蕾. 短程相互作用对准粒子相对论动力学的影响[J]. 华南师范大学学报(自然科学版), 2020, 52(4): 26-30. doi: 10.6054/j.jscnun.2020056
引用本文: 李志, 胡玥, 郭政鑫, 陈李梅, 黄育蕾. 短程相互作用对准粒子相对论动力学的影响[J]. 华南师范大学学报(自然科学版), 2020, 52(4): 26-30. doi: 10.6054/j.jscnun.2020056
LI Zhi, HU Yue, GUO Zhengxin, CHEN Limei, HUANG Yulei. The Influence of Short-Range Interaction on the Relativistic Dynamics of Quasi-Particles[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(4): 26-30. doi: 10.6054/j.jscnun.2020056
Citation: LI Zhi, HU Yue, GUO Zhengxin, CHEN Limei, HUANG Yulei. The Influence of Short-Range Interaction on the Relativistic Dynamics of Quasi-Particles[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(4): 26-30. doi: 10.6054/j.jscnun.2020056

短程相互作用对准粒子相对论动力学的影响

doi: 10.6054/j.jscnun.2020056
基金项目: 

国家自然科学基金项目 11704132

中国博士后科学基金面上项目 2018M633063

详细信息
    通讯作者:

    李志,教授,Email:lizhiphys@126.com

  • 中图分类号: O41

The Influence of Short-Range Interaction on the Relativistic Dynamics of Quasi-Particles

  • 摘要: 通过调节短程相互作用,在Su-Schrieffer-Heeger(SSH)模型中实现了Dirac点的移动与融合.该过程对应于一种由半金属相到能带绝缘相的拓扑相变(即Lifshitz相变).通过解析和数值研究的方法,对该相变过程中系统准粒子的相对论动力学特性进行了研究.结果表明:在短程相互作用很弱的情况下(即Dirac点融合前),系统展现出相对论动力学特征; 然而,随着短程相互作用的增强,Dirac点会发生融合相变.此后,系统则表现为非相对论动力学特征.因此,相变过程是由相对论到非相对论动力学转变的过程.进一步通过数值模拟得到了融合前(相对论)后(非相对论)粒子的密度分布随时间演化的图像.在相变前,单色Dirac准粒子发生劈裂,而双色Dirac准粒子产生定向漂移现象.在相变后,无论初态如何改变,系统始终无组分劈裂现象出现.最后,展示了不同相互作用下准粒子的质心运动曲线(世界线).
  • 图  1  SSH模型格点的跃迁方案、能带结构及Zak相位

    注:晶格常数L=1;跳跃能为th; Peierls不稳定性的表征参数为α.

    Figure  1.  The transition scheme, band structure and Zak phase of lattice in SSH model

    图  2  相对论和非相对论区域的能带结构

    Figure  2.  The band structure of relativistic and non-relativistic regions

    图  3  相对论和非相对论区域的准粒子波包演化

    Figure  3.  The wave packet evolution of relativistic and non-relativistic regions

    图  4  能带参数Δ=2情况下Dirac点融合过程中系统的世界线

    Figure  4.  The worldline of Dirac points' merging process with the band parameter Δ=2

  • [1] GIAMARCHI T. Quantum physics in one dimension[M]. Oxford:Oxford University Press, 2004.
    [2] HASHISAKA M, FUJISAWA T. Tomonaga-Luttinger-liquid nature of edge excitations in integer quantum Hall edge channels[J]. Reviews in Physics, 2018, 3(1):32-43.
    [3] ELIAS D C, GORBACHEV R V, MAYOROV A S, et al. Dirac cones reshaped by interaction effects in suspended graphene[J]. Nature Physics, 2011, 7:701-704. doi: 10.1038/nphys2049
    [4] ZHANG D W, ZHU Y Q, ZHAO Y X, et al. Topological quantum matter with cold atoms[J]. Advances in Phy-sics, 2018, 67(4):253-402. doi: 10.1080/00018732.2019.1594094
    [5] JURICIC V, VAFEK O, HERBUT I F. Conductivity of interacting massless Dirac particles in graphene:collisionless regime[J]. Physical Review B, 2010, 82:235402/1-32.
    [6] GONZALEZ J, GUINEA F, VOZMEDIANO M. Marginal-Fermi-liquid behavior from two-dimensional coulomb interaction[J]. Physical Review B, 1999, 59:R2474-R2477. doi: 10.1103/PhysRevB.59.R2474
    [7] SORELLA S, TOSATTI E. Semi-metal-insulator transition of the Hubbard model in the honeycomb lattice[J]. Europhysics Letters, 1992, 19(8):699-704. doi: 10.1209/0295-5075/19/8/007
    [8] PAIVA T, SCALETTAR R T, ZHENG W, et al. Ground-state and finite-temperature signatures of quantum phase transitions in the half-filled Hubbard model on a honeycomb lattice[J]. Physical Review B, 2005, 72:085123/1-11.
    [9] HERBUT I F. Interactions and phase transitions on graphene's honeycomb lattice[J]. Physical Review Letters, 2006, 97:146401/1-4.
    [10] HERBUT I F, JURICIC V, ROY B. Theory of interacting electrons on the honeycomb lattice[J]. Physical Review B, 2009, 79:085116/1-14.
    [11] MENG Z Y, LANG L C, WESSEL S, et al. Quantum spin liquid emerging in two-dimensional correlated Dirac fermions[J]. Nature, 2010, 464:847-851. doi: 10.1038/nature08942
    [12] ASSAAD F F, HERBUT I F. Pinning the order:the nature of quantum criticality in the Hubbard model on honeycomb lattice[J]. Physical Review X, 2013, 3:031010/1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000000900916
    [13] ZHU S L, WANG B G, DUAN L M. Simulation and detection of Dirac fermions with cold atoms in an optical lattice[J]. Physical Review Letters, 2007, 98:260402/1-4.
    [14] HOU J M, YANG W X, LIU X J. Massless Dirac fermions in a square optical lattice[J]. Physical Review A, 2009, 79:043621/1-7.
    [15] ZHANG D W, WANG Z D, ZHU S L. Relativistic quantum effects of Dirac particles simulated by ultracold atoms[J]. Frontiers of Physics, 2012, 7(1):31-53.
    [16] DORA B, HERBUT I F, MOESSNER R. Coupling, merging, and splitting Dirac points by electron-electron interaction[J]. Physical Review B, 2013, 88:075126/1-6.
    [17] TARRUELL L, GREIF D, UEHLINGER T, et al. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice[J]. Nature, 2012, 483:302-305. doi: 10.1038/nature10871
    [18] BAKR W S, PENG A, TAI M E, et al. Probing the superfluid to Mott insulator transition at the single-atom level[J]. Science, 2010, 329:547-550. doi: 10.1126/science.1192368
    [19] DOMBEYN A, CALOGERACOS A. Seventy years of the Klein paradox[J]. Physics Reports, 1999, 315:41-58. doi: 10.1016/S0370-1573(99)00023-X
    [20] GERRITSMA R, KIRCHMAIR G, ZAHRINGER F, et al. Quantum simulation of Dirac equation[J]. Nature, 2010, 463:68-71. doi: 10.1038/nature08688
    [21] ZANG X. Observing Zitterbewegung for photons near the Dirac point of a two-dimensional photonic crystal[J]. Physical Review Letters, 2008, 100:113903/1-4.
    [22] LI Z, WANG H Q, ZHANG D W, et al. Dynamics of Weyl quasiparticles in an optical lattice[J]. Physical Review A, 2016, 94:043617/1-7.
    [23] 张丹伟, 曹帅.人工自旋轨道耦合玻色-爱因斯坦凝聚体的元激发[J].华南师范大学学报(自然科学版), 2016, 48(4):10-15. doi: 10.6054/j.jscnun.2016.06.004

    ZHANG D W, CAO S. Elementary excitations in a synthetic spin-orbit-coupled Bose-Einstein condensate[J]. Journal of South China Normal University (Natural Science Edition), 2016, 48(4):10-15. doi: 10.6054/j.jscnun.2016.06.004
    [24] SU P, SCHRIEFFER J, HEEGER A. Solitons in polyacetylene[J]. Physical Review Letters, 1979, 42:1698-1701. doi: 10.1103/PhysRevLett.42.1698
    [25] SHEN X, LI Z. Topological characterization of a one-dimensional optical lattice with a force[J]. Physical Review A, 2018, 97:013608/1-7.
  • 加载中
图(4)
计量
  • 文章访问数:  349
  • HTML全文浏览量:  359
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-28
  • 刊出日期:  2020-08-25

目录

    /

    返回文章
    返回