留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数据驱动下的个性化自适应学习研究综述

朱佳 张丽君 梁婉莹

朱佳, 张丽君, 梁婉莹. 数据驱动下的个性化自适应学习研究综述[J]. 华南师范大学学报(自然科学版), 2020, 52(4): 17-25. doi: 10.6054/j.jscnun.2020055
引用本文: 朱佳, 张丽君, 梁婉莹. 数据驱动下的个性化自适应学习研究综述[J]. 华南师范大学学报(自然科学版), 2020, 52(4): 17-25. doi: 10.6054/j.jscnun.2020055
ZHU Jia, ZHANG Lijun, LIANG Wanying. A Review of Data-Driven Personalized Adaptive Learning[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(4): 17-25. doi: 10.6054/j.jscnun.2020055
Citation: ZHU Jia, ZHANG Lijun, LIANG Wanying. A Review of Data-Driven Personalized Adaptive Learning[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(4): 17-25. doi: 10.6054/j.jscnun.2020055

数据驱动下的个性化自适应学习研究综述

doi: 10.6054/j.jscnun.2020055
基金项目: 

国家自然科学基金项目 61877020

国家自然科学基金项目 U1811263

广州市大数据智能教育重点实验室 201905010009

详细信息
    通讯作者:

    朱佳,教授,Email:jzhu@m.scnu.edu.cn

  • 中图分类号: TP18;G434

A Review of Data-Driven Personalized Adaptive Learning

  • 摘要: 智能教育环境下的教学更加关注学习者的个性化诉求,而自适应学习能够为实现个性化教育提供技术和方法支持.文章从数据驱动的视角出发,通过开展国内外个性化自适应学习研究的综述分析,对其系统框架和相关组件进行阐述和解读.其中,重点从领域知识模型、学习者特征模型和教学模型三方面对其实现机制进行探析,提出当前研究存在的问题和不足,并在此基础上介绍了近年来可促进解释性提升的相关组件技术研究,奠定进一步深入个性化自适应学习研究的基础.
  • 图  1  个性化自适应学习基本框架

    Figure  1.  The basic framework of personalized adaptive learning

    图  2  个性化自适应学习框架的相关组件及对应关键技术

    Figure  2.  The related components and the key technologies of the personalized adaptive learning framework

  • [1] 菅保霞, 姜强, 赵蔚, 等.大数据背景下自适应学习个性特征模型研究——基于元分析视角[J].远程教育杂志, 2017, 35(4):87-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=672643087

    JIAN B X, JIANG Q, ZHAO W, et al. Research on stu-dents' personality traits modeling in adaptive learning on the background of big data:based on the perspective of meta-analysis[J]. Journal of Distance Education, 2017, 35(4):87-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=672643087
    [2] 祝智庭, 沈德梅.基于大数据的教育技术研究新范式[J].电化教育研究, 2013(10):5-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dhjyyj201310001
    [3] 何克抗.大数据面面观[J].电化教育研究, 2014(10):12-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dhjyyj201410002
    [4] 教育部.教育部关于印发《教育信息化"十三五"规划》的通知[EB/OL]. (2016-06-07)[2020-05-16]. http://www.moe.edu.cn/srcsite/A16/s3342/201606/t20160622_269367.html.
    [5] 教育部.教育部关于印发《教育信息化2.0行动计划》的通知[EB/OL]. (2018-04-13)[2020-05-16]. http://www.moe.gov.cn/srcsite/A16/s3342/201804/t20180425_334188.html.
    [6] 国务院.国务院关于印发新一代人工智能发展规划的通知[EB/OL]. (2017-07-20)[2020-05-16]. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm
    [7] 刘和海, 潘阳. "以学习者为中心":赋权理论视角下的个性化学习实践逻辑[J].中国电化教育, 2018(8):100-106.

    LIU H H, PAN Y. "Students as the center":personalized learning practice logic from the perspective of empowerment theory[J]. China Educational Technology, 2018(8):100-106.
    [8] 郭朝晖, 王楠, 刘建设.国内外自适应学习平台的现状分析研究[J].电化教育研究, 2016(4):55-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dhjyyj201604008

    GUO Z H, WANG N, LIU J S. Analysis of the current research status of adaptive learning platforms[J]. e-Education Research, 2016(4):55-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dhjyyj201604008
    [9] Educause. Key Issues in teaching and learning 2016[DB/OL]. (2016-02-05)[2020-05-06]. http://www.educause.edu/eli/initiatives/key-issues-in-teaching-and-learning.
    [10] CHAPLOT D S, RHIM E, KIM J. Personalized adaptive learning using neural networks[C]//Proceedings of the 3rd ACM Conference on Learning. New York: ACM, 2016: 165-168.
    [11] 姜强, 赵蔚, 李松, 等.个性化自适应学习研究——大数据时代数字化学习的新常态[J].中国电化教育, 2016(2):25-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=667836747

    JIANG Q, ZHAO W, LI S, et al. Research on personalized adaptive learning—a new normal form of digital learning in big data era[J]. China Educational Technology, 2016(2):25-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=667836747
    [12] 叶海智, 杨柳, 黄宏涛, 等.面向认知诊断的能力等级自适应试题推送模型构建及应用[J].电化教育研究, 2019(11):93-98;113. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dhjyyj201911013

    YE H Z, YANG L, HUANG H T, et al. Construction and application of an adaptive test push model for cognitive diagnosis[J]. e-Education Research, 2019(11):93-98;113. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dhjyyj201911013
    [13] LIU Q, TONG S W, LIU C R, et al. Exploiting cognitive structure for adaptive learning[C]//Proceedings of the 25th ACM SIGKDD International Conference on Know-ledge Discovery & Data Mining. New York: ACM, 2019: 627-635.
    [14] 崔向平, 徐娟.自适应学习技术的应用、问题及趋势——访美国俄亥俄州立大学大卫·斯坦恩教授[J].开放教育研究, 2019, 25(5):4-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kfjyyj201905002

    CUI X P, XU J. Application, issues, and trends of adaptive learning technology:an interview with Professor David Stein of Ohio State University[J]. Open Education Research, 2019, 25(5):4-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kfjyyj201905002
    [15] 师亚飞, 彭红超, 童名文.基于学习画像的精准个性化学习路径生成性推荐策略研究[J].中国电化教育, 2019(5):84-91. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdhjy201905013

    SHI Y F, PENG H C, TONG M W. Research on generative paths recommendation strategies of precisive persona-lized learning based on learning profile[J]. China Educational Technology, 2019(5):84-91. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdhjy201905013
    [16] 原福永, 冯凯东, 李晨, 等.融合用户经历的多策略自适应推荐模型[J].小型微型计算机系统, 2019, 40(7):1410-1415. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xxwxjsjxt201907011

    YUAN F Y, FENG K D, LI C, et al. User experience based adaptive recommendation model[J]. Journal of Chinese Computer Systems, 2019, 40(7):1410-1415. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xxwxjsjxt201907011
    [17] XIE H, CHU H C, HWANG G J, et al. Trends and development in technology-enhanced adaptive/personalized lear-ning:a systematic review of journal publications from 2007 to 2017[J]. Computers & Education, 2019, 140:1-16.
    [18] 李菲茗, 叶艳伟, 李晓菲, 等.知识追踪模型在教育领域的应用:2008—2017年相关研究的综述[J].中国远程教育, 2019(7):86-91. http://www.cnki.com.cn/Article/CJFDTotal-DDJY201907012.htm
    [19] ROY S, MADHYASTHA M, LAWRENCE S, et al. Inferring concept prerequisite relations from online educational resources[C]//Proceedings of the AAAI Conference on Ar-tificial Intelligence. Honolulu, Hawaii: AAAI Press, 2019, 33: 9589-9594.
    [20] 李振, 周东岱.教育知识图谱的概念模型与构建方法研究[J].电化教育研究, 2019(8):78-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dhjyyj201908010

    LI Z, ZHOU D D. Research on conceptual model and construction method of educational knowledge graph[J]. e-Education Research, 2019(8):78-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dhjyyj201908010
    [21] NATHANI D, CHAUHAN J, SHARMA C, et al. Learning attention-based embeddings for relation prediction in knowledge graphs[C]//Proceedings of the 57th Confe-rence of the Association for Computational Linguistics. Florence: Association for Computational Linguistics, 2019: 1-10.
    [22] XU J C, QIU X P, CHEN K, et al. Knowledge graph representation with jointly structural and textual encoding[C]//Proceedings of the 26th International Joint Confe-rence on Artificial Intelligence. Melbourne: Morgan Kaufmann Publishers Inc, 2017: 1318-1324.
    [23] PIECH C, BASSEN J, HUANG J, et al. Deep knowledge tracing[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Quebec: MIT Press, 2015: 505-513.
    [24] YEUNG C K, YEUNG D Y. Addressing two problems in deep knowledge tracing via prediction-consistent regularization[C]//Proceedings of the 5th Annual ACM Confe-rence on Learning at Scale. New York: ACM, 2018: 1-10.
    [25] KIM D, PARK C, OH J, et al. Deep hybrid recommender systems via exploiting document context and statistics of items[J]. Information Sciences, 2017, 417:72-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1a314923edbfcb778f94a7f442a8169a
    [26] NABIZADEH A H, GONÇALVES D, GAMA S, et al. Ada-ptive learning path recommender approach using auxiliary learning objects[J]. Computers & Education, 2020, 147:1-17.
    [27] ZHOU Y W, HUANG C Q, HU Q T, et al. Personalized learning full-path recommendation model based on LSTM neural networks[J]. Information Sciences, 2018, 444:135-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d0d691997ba4c9a87293929466b0a66b
    [28] CHEN P H, LU Y, ZHENG V W, et al. Knowedu:a system to construct knowledge graph for education[J]. IEEE Access, 2018, 6:31553-31563. http://ieeexplore.ieee.org/document/8362657
    [29] JI G L, LIU K, HE S Z, et al. Distant supervision for relation extraction with sentence-level attention and entity descriptions[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco, California: AAAI Press, 2017: 3060-3066.
    [30] WANG L, SY A, LIU L, et al. Learning to represent stu-dent knowledge on programming exercises using deep lear-ning[C]//Proceedings of the 10th International Confe-rence on Educational Data Mining. Wuhan, China: International Educational Data Mining Society, 2017: 324-329.
    [31] XIONG X L, ZHAO S Y, VAN INWEGEN E G, et al. Going deeper with deep knowledge tracing[C]//Proceedings of the 9th International Conference on Educational Data Mining. Raleigh, North Carolina: International Educational Data Mining Society, 2016: 545-550.
    [32] CORBETT A T, ANDERSON J R. Knowledge tracing:mode-ling the acquisition of procedural knowledge[J]. User Mode-ling and User-Adapted Interaction, 1994, 4(4):253-278.
    [33] KÄSER T, KLINGLER S, SCHWING A G, et al. Dynamic Bayesian networks for student modeling[J]. IEEE Tran-sactions on Learning Technologies, 2017, 10(4):450-462.
    [34] LIN Y K, SHEN S Q, LIU Z Y, et al. Neural relation extraction with selective attention over instances[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin: Association for Computational Linguistics, 2016: 2124-2133.
    [35] OKUBO F, YAMASHITA T, SHIMADA A, et al. A neural network approach for students' performance prediction[C]//Proceedings of the 7th International Learning Analytics & Knowledge Conference. New York: ACM, 2017: 598-599.
    [36] NORMADHI N B A, SHUIB L, NASIR H N M, et al. Identification of personal traits in adaptive learning environment:systematic literature review[J]. Computers & Education, 2019, 130:168-190.
    [37] 佩特·约翰内斯, 拉里·拉格斯多姆.自适应学习:溯源、前景与误区[J].中国远程教育, 2018(7):43-53;80.

    JOHANES P, LAGERSTROM L. Adative learning:tra-cing, prospect and misunderstanding[J]. Distance Education in China, 2018(7):43-53;80.
    [38] 梁迎丽, 刘陈.人工智能教育应用的现状分析、典型特征与发展趋势[J].中国电化教育, 2018(3):24-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=674704183

    LIANG Y L, LIU C. The application status, typical cha-racteristics and development trends of artificial intelligence in education[J]. China Educational Technology, 2018(3):24-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=674704183
    [39] NOVAK J D.学习、创造与使用知识概念图促进企业和学校的学习变革[M].赵国庆, 吴金闪, 唐京京, 等译.北京: 人民邮电出版社, 2016.
    [40] 李振, 周东岱, 王勇. "人工智能+"视域下的教育知识图谱:内涵、技术框架与应用研究[J].远程教育杂志, 2019, 37(4):42-53.

    LI Z, ZHOU D D, WANG Y. Research of educational knowledge graph from the perspective of "artificial intelligence+":connotation, technical framework and application[J]. Journal of Distance Education, 2019, 37(4):42-53.
    [41] 马相春, 钟绍春, 徐妲.大数据视角下个性化自适应学习系统支撑模型及实现机制研究[J].中国电化教育, 2017(4):97-102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdhjy201704015

    MA X C, ZHONG S C, XU D. Research on support model and implementation mechanism of personalized adaptive learning system from the perspective of big data[J]. China Educational Technology, 2017(4):97-102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdhjy201704015
    [42] CHAPLOT D, KOEDINGER K R. Data-driven automated induction of prerequisite structure graphs[C]//Procee-dings of 9th International Conference on Educational Data Mining. Raleigh, North Carolina: International Educational Data Mining Society, 2016: 318-323.
    [43] SOCHER R, CHEN D Q, MANNING C D, et al. Reaso-ning with neural tensor networks for knowledge base completion[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada: Curran Associates Inc, 2013: 926-934.
    [44] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems.Lake Tahoe, Nevada: Curran Associates Inc, 2013: 2787-2795.
    [45] JI G L, HE S Z, XU L H, et al. Knowledge graph embe-dding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Confe-rence on Natural Language Processing. Beijing: Association for Computer Linguistics, 2015: 687-696.
    [46] KAZEMI S M, POOLE D. Simple embedding for link prediction in knowledge graph[C]//Proceedings of the 32nd Annual Conference on Neural Information Processing Systems. Montréal, Canada: Neural Information Processing Sys-tems, 2018: 4284-4295.
    [47] EBBINGHAUS H. Memory:a contribution to experimental psychology[J]. Annals of Neurosciences, 2013, 20(4): 155-156.
    [48] MATAYOSHI J, GRANZIOL U, DOBLE C, et al. Forge-tting curves and testing effect in an adaptive learning and assessment system[C]//Proceedings of the 11th International Conference on Educational Data Mining. Buffalo, NY: International Educational Data Mining Society, 2018: 607-612.
    [49] HENZE N, NEJDL W. Adaptation in open corpus hypermedia[J]. International Journal of Artificial Intelligence in Education, 2001, 12(4):325-350. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0212447533
    [50] TRIANTAFILLOU E, POMPORTSIS A, DEMETRIADIS S, et al. The value of adaptivity based on cognitive style:an empirical study[J]. British Journal of Educational Technology, 2004, 35(1):95-106.
    [51] LIANG Y, CHEN H R. The research of video resource personalized recommendation system based on education website[C]//Proceedings of the 9th International Confe-rence on Computer Science & Education. New York: ACM, 2014: 898-902.
    [52] HAN Q Y, GAO F, WANG H. Ontology-based learning object recommendation for cognitive considerations[C]//Proceedings of the 8th World Congress on Intelligent Control and Automation. Jinan: IEEE, 2010: 2746-2750.
    [53] KUSUMAWARDANI S S, PRAKOSO R S, SANTOSA P I. Using ontology for providing content recommendation based on learning styles inside e-learning[C]//Procee-dings of the 2nd International Conference on Artificial Intelligence, Modelling and Simulation. New York: ACM, 2014: 276-281.
    [54] SHISHEHCHI S, BANIHASHEM S Y, ZIN N A M, et al. Review of personalized recommendation techniques for learners in e-learning systems[C]//Proceedings of the 2011 International Conference on Semantic Technology and Information Retrieval. Putrajaya: IEEE, 2011: 277-281.
    [55] ZHAO C Y, WANG J L. Network education video recommendation algorithm based on context and trust relationship[C]//Proceedings of the 2013 IEEE 4th International Conference on Software Engineering and Service Science. Beijing: IEEE, 2013: 537-540.
    [56] ŠPILKA M, POSOLDOVA A, ROZINAJ G, et al. Importance of recommendation system in modern forms of lear-ning[C]//Proceedings of the 2016 International Confe-rence on Systems, Signals and Image Processing. Bratislava, Slovakia: IEEE, 2016: 1-4.
    [57] 陈敏, 余胜泉, 杨现民, 等.泛在学习的内容个性化推荐模型设计——以"学习元"平台为例[J].现代教育技术, 2011(6):13-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdjyjs201106003

    CHEN M, YU S Q, YANG X M, et al. The personalized recommendation model design of content in the ubiquitous learning——taking "Learning Cell" for example[J]. Modern Educational Technology, 2011(6):13-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdjyjs201106003
    [58] TANG S, PETERSON J C, PARDOS Z A. Deep neural networks and how they apply to sequential education data[C]//Proceedings of the 3rd ACM Conference on Lear-ning at Scale. New York: ACM, 2016: 321-324.
    [59] 余胜泉, 李晓庆.基于大数据的区域教育质量分析与改进研究[J].电化教育研究, 2017(7):5-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=672492952

    YU S Q, LI X Q. Research on the analysis and improvement of regional education quality based on big data[J]. e-Education Research, 2017(7):5-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=672492952
    [60] 姜强, 赵蔚, 李松, 等.大数据背景下的精准个性化学习路径挖掘研究——基于AprioriAll的群体行为分析[J].电化教育研究, 2018(2):45-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=674308242

    JIANG Q, ZHAO W, LI S, et al. Research on the mining of precise personalized learning path in age of big data:analysis of group learning behaviors based on AprioriAll[J]. e-Education Research, 2018(2):45-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=674308242
    [61] HUANG Z, XU W, YU K. Bidirectional LSTM-CRF mo-dels for sequence tagging[J]. arXiv, (2015-08-09)[2020-05-16]. https://arxiv.org/abs/1508.01991.
    [62] 陈伟, 吴友政, 陈文亮, 等.基于BiLSTM-CRF的关键词自动抽取[J].计算机科学, 2018, 45(S1):91-96;113. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjkx2018z1019

    CHEN W, WU Y Z, CHEN W L, et al. Automatic keyword extraction based on BiLSTM-CRF[J]. Computer Science, 2018, 45(S1):91-96;113. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjkx2018z1019
    [63] MA X Z, HOVY E. End-to-end sequence labeling via bi-directional lstm-cnns-crf[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Lingui-stics. Berlin: Association for Computer Linguistics, 2016: 1064-1074.
    [64] LI J, YE D H, SHANG S. Adversarial transfer for named entity boundary detection with pointer networks[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao: Morgan Kaufmann Publishers Inc, 2019: 5053-5059.
    [65] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J/OL]. arXiv, (2015-08-09)[2020-05-16]. https://arxiv.org/abs/1508.01991.
    [66] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Mode-ling relational data with graph convolutional networks[C]//Proceedings of the European Semantic Web Conference. Berlin: Springer, 2018: 593-607.
    [67] KHAJAH M, LINDSEY R V, MOZER M C. How deep is knowledge tracing?[C]//Proceedings of the 9th International Conference on Educational Data Mining. Raleigh, North Carolina: International Educational Data Mining Society, 2016: 94-101.
    [68] NAKAGAWA H, IWASAWA Y, MATSUO Y. Graph-based knowledge tracing: modeling student proficiency using graph neural network[C]//Proceedings of the 2019 IEEE/WIC/ACM International Conference on Web Intelligence. New York: ACM, 2019: 156-163.
    [69] BATTAGLIA P W, HAMRICK J B, BAPST V, et al. Relational inductive biases, deep learning, and graph networks[J]. arXiv, (2018-01-04)[2020-05-16]. https://arxiv.org/abs/1806.01261.
    [70] GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[C]//Proceedings of the 34th International Conference on Machine Learning. New York: ACM, 2017: 1263-1272.
    [71] WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT: IEEE, 2018: 7794-7803.
    [72] PANDEY S, KARYPIS G. A self-attentive model for knowledge tracing[C]//Proceedings of the 12th International Conference on Educational Data Mining. Montréal: International Educational Data Mining Society, 2019: 384-389.
    [73] GONZÁLEZ-BRENES J, HUANG Y, BRUSILOVSKY P. General features in knowledge tracing to model multiple subskills, temporal item response theory, and expert knowledge[C]//Proceedings of the 7th International Conference on Educational Data Mining. London: International Educational Data Mining Society, 2014: 84-91.
    [74] CAI Y L, NIU Z D, WANG Y W, et al. Learning trend analysis and prediction based on knowledge tracing and regression analysis[C]//Proceedings of the International Conference on Database Systems for Advanced Applications. Berlin: Springer, 2015: 29-41.
    [75] KHAJAH M M, HUANG Y, GONZÁLEZ-BRENES J P, et al. Integrating knowledge tracing and item response theory: a tale of two frameworks[C]//Proceedings of 4th International Workshop on Personalization Approaches in Learning Environments. Aalborg: CEUR Workshop, 2014, 1181: 7-15.
    [76] WANG X, HE X N, CAO Y X, et al. Kgat: knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Confe-rence on Knowledge Discovery & Data Mining. New York: ACM, 2019: 950-958.
    [77] PLIAKOS K, JOO S H, PARK J Y, et al. Integrating machine learning into item response theory for addressing the cold start problem in adaptive learning systems[J]. Computers & Education, 2019, 137:91-103.
  • 加载中
图(2)
计量
  • 文章访问数:  570
  • HTML全文浏览量:  503
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-13
  • 刊出日期:  2020-08-25

目录

    /

    返回文章
    返回