留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛酸锂负极的相分离机制

卢侠 陈伟鑫

卢侠, 陈伟鑫. 钛酸锂负极的相分离机制[J]. 华南师范大学学报(自然科学版), 2020, 52(4): 1-16. doi: 10.6054/j.jscnun.2020054
引用本文: 卢侠, 陈伟鑫. 钛酸锂负极的相分离机制[J]. 华南师范大学学报(自然科学版), 2020, 52(4): 1-16. doi: 10.6054/j.jscnun.2020054
LU Xia, CHEN Weixin. Phase Separation in Li4Ti5O12 Anode for Li-Ion Batteries[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(4): 1-16. doi: 10.6054/j.jscnun.2020054
Citation: LU Xia, CHEN Weixin. Phase Separation in Li4Ti5O12 Anode for Li-Ion Batteries[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(4): 1-16. doi: 10.6054/j.jscnun.2020054

钛酸锂负极的相分离机制

doi: 10.6054/j.jscnun.2020054
基金项目: 

国家重点研发计划项目 2019YFA0705700

国家自然科学基金项目 11704019

详细信息
    通讯作者:

    卢侠,教授,Email:luxia3@mail.sysu.edu.cn

  • 中图分类号: O64

Phase Separation in Li4Ti5O12 Anode for Li-Ion Batteries

  • 摘要: 尖晶石钛酸锂(Li4Ti5O12)作为锂离子电池负极材料具有长寿命、高稳定性的特点,是高功率锂离子电池的理想选择,对发展电动汽车以及智能电网有重要意义.结合球差校正透射电镜(STEM)、电子能量损失谱(EELS)和理论计算,在原子尺度观测到了尖晶石钛酸锂(Li4Ti5O12)的结构,实现了对脱嵌锂过程的直接观测与表征.在锂化过程中,出现一个近似理想的异质界面(Li4Ti5O12/Li7Ti5O12),界面两侧Ti离子呈不同价态分布(Ti3+/Ti4+).而随着锂离子在材料中的嵌入和脱出,TiO6八面体里面的Ti—O键会产生相应的收缩或拉伸(“呼吸”模型),而这种键长的变化直接导致材料在不同区域的电子电导率产生质的变化(由绝缘体的Li4Ti5O12向近似导体的Li7Ti5O12转变),而基本不影响材料的离子电导率,这是材料具有优良倍率性能的重要条件.借助原子分辨的EELS分析研究锂化以后的Li7Ti5O12表面, 观测到材料表面的Ti3+自发氧化成Ti4+,这个电荷转移过程可以诱导电极材料界面上的副反应,可以合理解释钛酸锂电池产气的原因.进一步将钛酸锂电池用于储钠研究发现了晶格中存在Li4Ti5O12/Li7Ti5O12/Na6LiTi5O12三相分离机制,深化了对电极材料过程动力学的认识.这些重要研究结果为钛酸锂的工业化应用提供了重要的结构基础与理论指导.
  • 图  1  尖晶石Li4Ti5O12的晶格结构[10]

    Figure  1.  The lattice of Li4Ti5O12 spinel[10]

    图  2  C/20电流下的充放电曲线[3]

    注:此图来源于文献[3]的支撑材料.

    Figure  2.  The typical discharge/charge profile at C/20[3]

    图  3  Li4Ti5O12晶格沿[110]轴方向的原子尺度表征[3]

    Figure  3.  The atomic-scale characterizations of Li4Ti5O12 lattice along [110] zone axis[3]

    图  4  不同充放电状态下Li4Ti5O12沿[110]方向的HAADF图[2]

    Figure  4.  The HAADF images of Li4Ti5O12 in different charge and discharge conditions along [110] zone axis[2]

    图  5  化学锂化Li4+xTi5O12(x=0.15)颗粒的两相界面特性[3]

    Figure  5.  The interfacial characteristics in chemically lithiated Li4+xTi5O12 (x=0.15)[3]

    图  6  中间态的锂离子迁移路径及相应的能垒[27]

    Figure  6.  The Li+ ion migration pathways and the corresponding energy barriers in the intermediate states[27]

    图  7  钛酸锂两相界面形成的双电层[28]

    Figure  7.  The double charge layers formed between the two phase-interfaces of lithium titanate[28]

    图  8  Ti的L2, 3边EELS谱图[3]

    Figure  8.  The EELS profiles of Ti L2, 3 edges[3]

    图  9  Li4Ti5O12和Li3.5Ca0.5Ti5O12优化后的原子结构和能带图[37]

    Figure  9.  The optimized atomic structures and band graphs of Li4Ti5O12 and Li3.5Ca0.5Ti5O12[37]

    图  10  Li4Ti5O12的高压非晶化[49]

    Figure  10.  The pressure-induced amorphization of Li4Ti5O12[49]

    图  11  不同偏压下的Li4-xTi5O12-y的STEM图像、氧原子移动方向及线扫描图[50]

    Figure  11.  The STEM images, oxygen atomic shift and the line profiles of Li4-xTi5O12-y under different bias[50]

    图  12  Li4Ti5O12不同表面结构的HAADF图[2]

    注:A图为(110)面; B图为Li—Ti乱序的(110)面; C图为(111)面; D图为(121)面; E图为(110)面.

    Figure  12.  The HAADF images of different surficial structures of Li4Ti5O12[2]

    图  13  循环过程电压曲线图及表面重构形成示意图[1]

    Figure  13.  The schematic illustration of voltage profile evolution during cycles and the formation of relaxed surface zone[1]

    图  14  Li7Ti5O12(110)晶面的EELS谱[2]

    Figure  14.  The EELS spectra of Li7Ti5O12 (110) plane[2]

    图  15  C/10电流下不同粘结剂的Li4Ti5O12电极的充放电曲线及循环性能[10]

    Figure  15.  The charge/discharge curves and the cyding performance of Li4Ti5O12 electrode with different binders at C/10[10]

    图  16  C/10电流下不同粘结剂的Li4Ti5O12电极的同步辐射原位XRD谱[10]

    Figure  16.  The in-situ synchrotron XRD spectra of Li4Ti5O12 electrode with different binders at C/10[10]

    图  17  半电化学钠化Li4Ti5O12颗粒的STEM图、ABF及ABF衬度线扫描图[10]

    注:A~I分别为Na6LiTi5O12、Li4Ti5O12、Li7Ti5O12的HAADF、ABF及ABF衬度线扫描图; J为相界面附近的ABF图; K、L分别为Li4Ti5O12/Li7Ti5O12和Na6LiTi5O12/Li4Ti5O12的界面线扫描图.

    Figure  17.  The STEM images of half-electrochemical sodiated Li4Ti5O12 particle, ABF images and ABF line profiles[10]

    表  1  Li4Ti5O12/Li7Ti5O12超晶胞中不同锂离子构型的总能量计算值[3]

    Table  1.   The calculated total energy of different Li ion arrangements in Li4Ti5O12/Li7Ti5O12 supercell[3]

    构型 Li4Ti5O12 Li7Ti5O12
    N(8a) N(16c) N(16d) 总能量/eV N(8a) N(16c) N(16d) 总能量/eV
    1 6 0 2 0 0 12 2 0
    2 5 1 2 1.356 1 11 2 2.237
    3 4 2 2 3.584 2 10 2 5.560
    4 3 3 2 4.912 3 9 2 6.962
    5 2 4 2 4.478 4 8 2 7.412
    6 1 5 2 3.321 5 7 2 8.441
    7 0 6 2 3.262 6 6 2 9.468
    注:N为不同位点的原子数.
    下载: 导出CSV

    表  2  Li7Ti5O12中Ti离子的Bader电荷分析[3]

    Table  2.   The Bader atomic charge analysis of the Ti ions in Li7Ti5O12 supercell[3]

    GGA结果 GGA+U (Ueff=4.5 eV)结果
    电荷/e Dmin/nm V/(×10-3 nm3) 电荷/e Dmin/nm V/(×10-3 nm3)
    1.494 2 0.670 8 4.273 3 1.382 9 0.654 3 4.201 1
    1.499 1 0.667 5 4.294 5 1.350 9 0.541 8 4.062 8
    1.508 6 0.673 5 4.278 6 1.383 7 0.678 4 4.168 3
    1.496 2 0.614 0 4.256 2 1.358 7 0.655 6 4.083 3
    1.562 5 0.636 7 4.492 8 1.754 5 0.573 0 5.670 9
    1.509 3 0.673 5 4.254 8 1.748 3 0.607 3 5.709 3
    1.622 6 0.617 0 4.696 3 1.755 4 0.617 4 5.568 2
    1.628 2 0.672 2 4.776 9 1.759 5 0.631 5 5.727 1
    1.576 0 0.680 5 4.804 7 1.776 5 0.632 8 5.710 6
    下载: 导出CSV
  • [1] CHIU H C, LU X, ZHOU J, et al. Capacity fade mechanism of Li4Ti5O12 nanosheet anode[J]. Advanced Energy Materials, 2017, 7(5):1601825/1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/aenm.201601825
    [2] LU X, GU L, HU Y S, et al. New insight into the atomic-scale bulk and surface structure evolution of Li4Ti5O12 anode[J]. Journal of the American Chemical Society, 2015, 137(4):1581-1586. doi: 10.1021/ja5115562
    [3] LU X, ZHAO L, HE X, et al. Lithium storage in Li4Ti5O12 spinel:the full static picture from electron microscopy[J]. Advanced Materials, 2012, 24:3233-3238. doi: 10.1002/adma.201200450
    [4] HE Y B, LIU M, HUANG Z D, et al. Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries[J]. Journal of Power Sources, 2013, 239:269-276. doi: 10.1016/j.jpowsour.2013.03.141
    [5] MENG T, LI B, HU L, et al. Engineering of oxygen vacancy and electric-field effect by encapsulating lithium titanate in reduced graphene oxide for superior lithium ion storage[J]. Small Methods, 2019, 3(10):1900185/1-11.
    [6] SONG H, YUN S W, CHUN H H, et al. Anomalous decrease in structural disorder due to charge redistribution in Cr-doped Li4Ti5O12 negative-electrode materials for high-rate Li-ion batteries[J]. Energy & Environmental Science, 2012, 5(12):9903-9913. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=da1e562912e021975473f335c50970c2
    [7] ZHANG H, DENG Q, MOU C, et al. Surface structure and high-rate performance of spinel Li4Ti5O12 coated with N-doped carbon as anode material for lithium-ion batteries[J]. Journal of Power Sources, 2013, 239:538-545. doi: 10.1016/j.jpowsour.2013.03.013
    [8] DESCHANVRES A, RAVEAU B, SEKKAL Z. Mise en evidence et etude cristallographique dune nouvelle solution solide de type spinelle Li1+xTi2-xO4 0≤x≤0.333[J]. Materials Research Bulletin, 1971, 6(8):699-704. doi: 10.1016/0025-5408(71)90103-6
    [9] CHIU H C, LU X, ZHOU J, et al. Annealing-regulated elimination of residual strain-induced structural relaxation for stable high-power Li4Ti5O12 nanosheet anodes[J]. Nano Energy, 2017, 32:533-541. doi: 10.1016/j.nanoen.2016.12.063
    [10] SUN Y, ZHAO L, PAN H, et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries[J]. Nature Communications, 2013, 4:1870/1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=db22fac61517def8fa83dcebe7797ac2
    [11] COLBOW K, DAHN J, HAERING R. Structure and electrochemistry of the spinel oxides LiTi2O4 and Li4/3Ti5/3O4[J]. Journal of Power Sources, 1989, 26:397-402. doi: 10.1016/0378-7753(89)80152-1
    [12] SCHARNER S, WEPPNER W, SCHMID-BEURMANN P. Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67O4 spinel[J]. Journal of the Electrochemical Society, 1999, 146(3):857-861. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=be3cfa2f259ca8215ef42b48db223bca
    [13] SCHMIDT W, BOTTKE P, STERNAD M, et al. Small change great effect:steep increase of Li ion dynamics in Li4Ti5O12 at the early stages of chemical Li insertion[J]. Chemistry of Materials, 2015, 27(5):1740-1750. doi: 10.1021/cm504564k
    [14] OHZUKU T, UEDA A, YAMAMOTO N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells[J]. Journal of the Electrochemical Society, 1995, 142(5):1431-1435. http://www.researchgate.net/publication/280685274_Zero-strain_insertion_material_of_LiLi13Ti53Ti53O4_for_rechargeable_lithium_cells
    [15] LIU H, ZHU Z, HUANG J, et al. Elucidating the limit of Li insertion into the spinel Li4Ti5O12[J]. ACS Materials Letters, 2019, 1(1):96-102. doi: 10.1021/acsmaterialslett.9b00099
    [16] ALDON L, KUBIAK P, WOMES M, et al. Chemical and electrochemical Li-insertion into the Li4Ti5O12 spinel[J]. Chemistry of Materials, 2004, 16(26):5721-5725. doi: 10.1021/cm0488837
    [17] COLIN J F, GODBOLE V, NOVÁK P. In situ neutron diffraction study of Li insertion in Li4Ti5O12[J]. Electrochemistry Communications, 2010, 12(6):804-807. doi: 10.1016/j.elecom.2010.03.038
    [18] TAKAMI N, HOSHINA K, INAGAKI H. Lithium diffusion in Li4/3Ti5/3O4 particles during insertion and extraction[J]. Journal of the Electrochemical Society, 2011, 158(6):A725-A730. doi: 10.1149/1.3574037
    [19] LU W, BELHAROUAK I, LIU J, et al. Electrochemical and thermal investigation of Li3Ti5/3O4 spinel[J]. Journal of Electrochemistry Society, 2007, 154(2):A114-A118. doi: 10.1149/1.2402117
    [20] FINDLAY S, SHIBATA N, SAWADA H, et al. Robust atomic resolution imaging of light elements using scanning transmission electron microscopy[J]. Applied Physics Letters, 2009, 95(19):191913/1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a8c220db6cfa4d3da4c1d49e7dd7da6f
    [21] PANG W K, PETERSON V K, SHARMA N, et al. Lithium migration in Li4Ti5O12 studied using in situ neutron powder diffraction[J]. Chemistry of Materials, 2014, 26(7):2318-2326. doi: 10.1021/cm5002779
    [22] ZHANG W, TOPSAKAL M, CAMA C, et al. Multi-stage structural transformations in zero-strain lithium titanate unveiled by in situ X-ray absorption fingerprints[J]. Journal of the American Chemical Society, 2017, 139(46):16591-16603. doi: 10.1021/jacs.7b07628
    [23] WAGEMAKER M, SIMON D R, KELDER E M, et al. A kinetic two-phase and equilibrium solid solution in spinel Li4+xTi5O12[J]. Advanced Materials, 2006, 18(23):3169-3173. doi: 10.1002/adma.200601636
    [24] ZIEBARTH B, KLINSMANN M, ECKL T, et al. Lithium diffusion in the spinel phase Li4Ti5O12 and in the rocksalt phase Li7Ti5O12 of lithium titanate from first principles[J]. Physical Review B, 2014, 89(17):174301/1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a36fb038c5996b63ff7f69c1ec535746
    [25] WAGEMAKER M, VAN ECK E R, KENTGENS A P, et al. Li-ion diffusion in the equilibrium nanomorphology of spinel Li4+xTi5O12[J]. The Journal of Physical Chemistry B, 2009, 113(1):224-230. doi: 10.1021/jp8073706
    [26] GANAPATHY S, VASILEIADIS A, HERINGA J R, et al. The fine line between a two-phase and solid-solution phase transformation and highly mobile phase interfaces in spinel Li4+xTi5O12[J]. Advanced Energy Materials, 2017, 7(9):1601781/1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5c44ca9913ceb604d3e8d4d1d611117c
    [27] ZHANG W, SEO D H, CHEN T, et al. Kinetic pathways of ionic transport in fast-charging lithium titanate[J]. Science, 2020, 367:1030-1034. doi: 10.1126/science.aax3520
    [28] WEN Y, CHEN X, LU X, et al. Interface charges boosted ultrafast lithiation in Li4Ti5O12 revealed by in-situ electron holography[J]. Journal of Energy Chemistry, 2018, 27(5):1397-1401. doi: 10.1016/j.jechem.2018.02.019
    [29] SHAO-HORN Y, CROGUENNEC L, DELMAS C, et al. Atomic resolution of lithium ions in LiCoO2[J]. Nature Materials, 2003, 2(7):464-467. doi: 10.1038/nmat922
    [30] CHEN C, VAUGHEY J, JANSEN A N, et al. Studies of Mg-substituted Li4-xMgxTi5O12 spinel electrodes (0≤x≤1) for lithium batteries[J]. Journal of the Electrochemical Society, 2001, 148(1):A102-A104.
    [31] YOUNG D, RANSIL A, AMIN R, et al. Electronic conductivity in the Li4/3Ti5/3O4-Li7/3Ti5/3O4 system and variation with state-of-charge as a Li battery anode[J]. Advanced Energy Materials, 2013, 3(9):1125-1129. doi: 10.1002/aenm.201300134
    [32] OUYANG C, ZHONG Z, LEI M. Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel[J]. Electrochemistry Communications, 2007, 9(5):1107-1112. doi: 10.1016/j.elecom.2007.01.013
    [33] TSAI P C, HSU W D, LIN S K. Atomistic structure and ab initio electrochemical properties of Li4Ti5O12 defect spinel for Li ion batteries[J]. Journal of the Electrochemical Society, 2014, 161(3):A439-A444. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8764c71484ac85686520747b270c6433
    [34] VERDE M G, BAGGETTO L, BALKE N, et al. Elucidating the phase transformation of Li4Ti5O12 lithiation at the nanoscale[J]. ACS Nano, 2016, 10(4):4312-4321. doi: 10.1021/acsnano.5b07875
    [35] 卢侠, 李泓.锂电池基础科学问题(Ⅱ):电池材料缺陷化学[J].储能科学与技术, 2013(2):157-164. doi: 10.3969/j.issn.2095-4239.2013.02.010

    LU X, LI H. Fundamental scientific aspects of lithium batteries(Ⅱ):defect chemistry in battery materials[J]. Energy Storage Science and Technology, 2013(2):157-164. doi: 10.3969/j.issn.2095-4239.2013.02.010
    [36] LIU D, OUYANG C, SHU J, et al. Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12[J]. Physica Status Solidi B, 2006, 243(8):1835-1841. doi: 10.1002/pssb.200541404
    [37] ZHANG Q, ZHANG S, NING F, et al. Calcium doping of lithium titanium oxide nanospheres:a combined first-principles and experimental study[J]. Energy Technology, 2017, 5(4):539-543. doi: 10.1002/ente.201600371
    [38] WOLFENSTINE J, LEE U, ALLEN J. Electrical conductivity and rate-capability of Li4Ti5O12 as a function of heat-treatment atmosphere[J]. Journal of Power Sources, 2006, 154:287-289. doi: 10.1016/j.jpowsour.2005.12.044
    [39] YAO Z, YIN H, ZHOU L, et al. Ti3+ Self-doped Li4Ti5O12 anchored on N-doped carbon nanofiber arrays for ultrafast lithium-ion storage[J]. Small, 2019, 15(50):1905296/1-7.
    [40] KICK M, GROSU C, SCHUDERER M, et al. Mobile small polarons explain conductivity in lithium titanium oxide battery electrodes[J]. The Journal of Physical Chemistry Letters, 2020, 11(7):2535-2540. doi: 10.1021/acs.jpclett.0c00568
    [41] 郑浩, 高健, 王少飞, 等.锂电池基础科学问题(Ⅵ):离子在固体中的输运[J].储能科学与技术, 2013, 2(6):620-635.

    ZHENG H, GAO J, WANG S F, et al.Fundamental scientific aspects of lithium batteries(Ⅵ):ionic transport in solids[J]. Energy Storage Science and Technology, 2013, 2(6):620-635.
    [42] CHEN Y, OUYANG C, SONG L, et al. Lithium ion diffusion in Li4+xTi5O12:From ab initio studies[J]. Electrochimica Acta, 2011, 56(17):6084-6088. doi: 10.1016/j.electacta.2011.04.077
    [43] WILKENING M, IWANIAK W, HEINE J, et al. Microscopic Li self-diffusion parameters in the lithiated anode material Li4+ xTi5O12 (0≤x≤3) measured by 7 Li solid state NMR[J]. Physical Chemistry Chemical Physics, 2007, 9(47):6199-6202. doi: 10.1039/b713311a
    [44] WILKENING M, AMADE R, IWANIAK W, et al. Ultraslow Li diffusion in spinel-type structured Li4Ti5O12:a comparison of results from solid state NMR and impedance spectroscopy[J]. Physical Chemistry Chemical Physics, 2007, 9(10):1239-1246. doi: 10.1039/B616269J
    [45] HAIN H, SCHEUERMANN M, HEINZMANN R, et al. Study of local structure and Li dynamics in Li4+xTi5O12 (0≤x≤5) using 6Li and 7Li NMR spectroscopy[J]. Solid State Nuclear Magnetic Resonance, 2012, 42:9-16. doi: 10.1016/j.ssnmr.2011.11.007
    [46] VIJAYAKUMAR M, KERISIT S, ROSSO K M, et al. Lithium diffusion in Li4Ti5O12 at high temperatures[J]. Journal of Power Sources, 2011, 196:2211-2220. doi: 10.1016/j.jpowsour.2010.09.060
    [47] RHO Y H, KANAMURA K. Li+ ion diffusion in Li4Ti5O12 thin film electrode prepared by PVP sol-gel method[J]. Journal of Solid State Chemistry, 2004, 177(6):2094-2100. doi: 10.1016/j.jssc.2004.02.018
    [48] LIN C, DING B, XIN Y, et al. Advanced electrochemical performance of Li4Ti5O12-based materials for lithium-ion battery:synergistic effect of doping and compositing[J]. Journal of Power Sources, 2014, 248:1034-1041. doi: 10.1016/j.jpowsour.2013.09.120
    [49] HUANG Y, HE Y, SHENG H, et al. Li-ion battery material under high pressure:amorphization and enhanced conductivity of Li4Ti5O12[J]. National Science Review, 2018, 6(2):239-246.
    [50] MENG F, ZHANG Q, GAO A, et al. Synergistic O2-/Li+ dual ion transportation at atomic scale[J]. Research, 2019, 2019:9087386/1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yj-e201901002
    [51] WANG Y Q, GU L, GUO Y G, et al. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery[J]. Journal of the American Chemical Society, 2012, 134(18):7874-7879. doi: 10.1021/ja301266w
    [52] BORGHOLS W, WAGEMAKER M, LAFONT U, et al. Size effects in the Li4+xTi5O12 spinel[J]. Journal of the American Chemical Society, 2009, 131(49):17786-17792. doi: 10.1021/ja902423e
    [53] GANAPATHY S, WAGEMAKER M. Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion[J]. ACS Nano, 2012, 6(10):8702-8712. doi: 10.1021/nn302278m
    [54] WU K, YANG J, ZHANG Y, et al. Investigation on Li4Ti5O12 batteries developed for hybrid electric vehicle[J]. Journal of Applied Electrochemistry, 2012, 42(12):989-995. doi: 10.1007/s10800-012-0442-0
    [55] BELHAROUAK I, KOENIG G M, TAN T, et al. Performance degradation and gassing of Li4Ti5O12/LiMn2O4 lithium-ion cells[J]. Journal of the Electrochemical Society, 2012, 159(8):A1165-A1170. doi: 10.1149/2.013208jes
    [56] HE Y B, LI B, LIU M, et al. Gassing in Li4Ti5O12-based batteries and its remedy[J]. Scientific Reports, 2012, 2:913/1-9.
    [57] LIU W, LIU H, WANG Q, et al. Gas swelling behaviour at different stages in Li4Ti5O12/LiNi1/3Co1/3Mn1/3O2 pouch cells[J]. Journal of Power Sources, 2017, 369:103-110. doi: 10.1016/j.jpowsour.2017.10.001
    [58] ZHAO L, PAN H, HU Y, et al. Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery[J]. Chinese Physics B, 2012, 21(2):028201/1-4.
    [59] YU X, PAN H, WAN W, et al. A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation[J]. Nano Letters, 2013, 13(10):4721-4727. doi: 10.1021/nl402263g
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  531
  • HTML全文浏览量:  475
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-16
  • 刊出日期:  2020-08-25

目录

    /

    返回文章
    返回