留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异源表达花生基因AhGLK1对拟南芥glk1glk2突变体表型特征及抗旱性的影响

刘星 苏良辰 张拜宏 曾丽丹 李媚娟 李玲

刘星, 苏良辰, 张拜宏, 曾丽丹, 李媚娟, 李玲. 异源表达花生基因AhGLK1对拟南芥glk1glk2突变体表型特征及抗旱性的影响[J]. 华南师范大学学报(自然科学版), 2020, 52(3): 78-84. doi: 10.6054/j.jscnun.2020047
引用本文: 刘星, 苏良辰, 张拜宏, 曾丽丹, 李媚娟, 李玲. 异源表达花生基因AhGLK1对拟南芥glk1glk2突变体表型特征及抗旱性的影响[J]. 华南师范大学学报(自然科学版), 2020, 52(3): 78-84. doi: 10.6054/j.jscnun.2020047
LIU Xing, SU Liangchen, ZHANG Baihong, ZENG Lidan, LI meijuan, LI Ling. The Effect of Heterologous Expression of Peanut Gene AhGLK1 on the Phenotypic Characteristics and Drought Resistance of Arabidopsis glk1glk2 Mutants[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(3): 78-84. doi: 10.6054/j.jscnun.2020047
Citation: LIU Xing, SU Liangchen, ZHANG Baihong, ZENG Lidan, LI meijuan, LI Ling. The Effect of Heterologous Expression of Peanut Gene AhGLK1 on the Phenotypic Characteristics and Drought Resistance of Arabidopsis glk1glk2 Mutants[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(3): 78-84. doi: 10.6054/j.jscnun.2020047

异源表达花生基因AhGLK1对拟南芥glk1glk2突变体表型特征及抗旱性的影响

doi: 10.6054/j.jscnun.2020047
基金项目: 

国家自然科学基金项目 31671600

遵义医科大学学术新苗培养及创新探索专项项目 黔科合平台人才[2018]5772-023

详细信息
    通讯作者:

    李玲,教授,Email:liling502@126.com

  • 中图分类号: Q786

The Effect of Heterologous Expression of Peanut Gene AhGLK1 on the Phenotypic Characteristics and Drought Resistance of Arabidopsis glk1glk2 Mutants

  • 摘要: 为探讨花生基因AhGLK1对拟南芥表型特征和抗旱能力的影响,以glk1glk2突变体为实验材料,异源表达AhGLK1,观察转基因拟南芥表型特征,包括叶色、叶片数量和形态等;利用共聚焦显微镜观察叶绿体;测定拟南芥叶片失水率和旱后存活率;利用荧光测定仪检测干旱和复水恢复过程中,拟南芥叶片叶绿素荧光参数的变化.结果表明:AhGLK1/glk1glk2回复株系拟南芥叶片呈绿色,叶片数量增加,叶片卷曲,叶柄增长,叶绿体发育完善,气孔增多,叶片保水性提高,旱后存活率显著升高.叶绿素荧光参数在干旱胁迫下显著降低,而复水时恢复.证明AhGLK1通过影响叶片数量、形态发育以及光合作用等提高拟南芥的抗旱能力.
  • 图  1  Col-0glk1glk2AhGLK1/glk1glk2拟南芥株系叶色和抽薹前叶片数量

    Figure  1.  The colour and number of leaves in Col-0, glk1glk2 and AhGLK1/glk1glk2 lines

    图  2  Col-0glk1glk2AhGLK1/glk1glk2拟南芥植株叶片表型

    注:图中不同字母表示差异具有统计学意义(P < 0.05),图 4图 6同.

    Figure  2.  The leaf phenotypes of Col-0, glk1glk2 and AhGLK1/glk1glk2 lines

    图  3  Col-0glk1glk2AhGLK1/glk1glk2植株抽薹和开花情况

    Figure  3.  The bolting and flowering of Col-0, glk1glk2 and AhGLK1/glk1glk2 lines

    图  4  Col-0glk1glk2AhGLK1/glk1glk2拟南芥植株的叶绿体和气孔发育

    Figure  4.  The development of chloroplasts and stomas in Col-0, glk1glk2 and AhGLK1/glk1glk2 lines

    图  5  Col-0glk1glk2AhGLK1/glk1glk2的旱后恢复情况及叶片相对含水量、失水率变化

    Figure  5.  The plant growth during recovery from drought, leaf relative water content and water loss rate of Col-0, glk1glk2 and AhGLK1/glk1glk2 lines

    图  6  Col-0glk1glk2AhGLK1/glk1glk2在干旱和复水恢复过程中叶绿素荧光参数的变化

    Figure  6.  The changes of chlorophyll fluorescence parameters in Col-0, glk1glk2 and AhGLK1/glk1glk2 lines during drought and recovery from drought

    表  1  Col-0glk1glk2AhGLK1/glk1glk2植株抽薹和开花时间

    Table  1.   The bolting and flowering time of Col-0, glk1glk2 and AhGLK1/glk1glk2 lines

    株系 全部抽薹时间/d 全部开花时间/d
    Col-0 20.13±1.25b 24.1±1.19b
    glk1glk2 16.25±1.04c 20.3±0.95c
    AhGLK1/glk1glk2 30.25±1.28a 36.3±1.16a
    注:表中数据为平均值±标准差,同列数据后不同字母表示差异具有统计学意义(P < 0.05).
    下载: 导出CSV
  • [1] SAFI A, MEDICI A, SZPONARSKI W, et al. The world according to GARP transcription factors[J]. Current Opinion in Plant Biology, 2017, 39:159-167. doi: 10.1016/j.pbi.2017.07.006
    [2] RIECHMANN J L, HEARD J, MARTIN G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499):2105-2110. doi: 10.1126/science.290.5499.2105
    [3] JENKINS M T. A second gene producing golden plant co- lorin maize[J]. The American Naturalist, 1926, 60(670):484-488. doi: 10.1086/280119
    [4] BRAND A, BOROVSKY Y, HILL T, et al. CaGLK2 regulates natural variation of chlorophyll content and fruit color in pepper fruit[J]. Theoretical and Applied Genetics, 2014, 127(10):2139-2148. doi: 10.1007/s00122-014-2367-y
    [5] FITTER D W, MARTIN D J, COPLEY M J, et al. GLK gene pairs regulate chloroplast development in diverse plant species[J]. The Plant Journal, 2002, 31(6):713-727. doi: 10.1046/j.1365-313X.2002.01390.x
    [6] POWELL A L, NGUYEN C V, HILL T, et al. Uniform ripening encodes a golden 2-like transcription factor regulating tomato fruit chloroplast development[J]. Science, 2012, 336(6089): 1711-1715. doi: 10.1126/science.1222218
    [7] 李媚娟, 苏良辰, 刘帅, 等.花生AhHDA1互作蛋白AhGLK的筛选及特性分析[J].作物学报, 2017, 43 (2):218-225. doi: 10.3969/j.issn.1000-2561.2017.02.006

    LI M J, SU L C, LIU S, et al. Screening of AhHDA1 interacting-protein AhGLK and characterization in peanut (Arachis hypogaea L.)[J]. Acta Agronomica Sinica, 2017, 43(2):218-225. doi: 10.3969/j.issn.1000-2561.2017.02.006
    [8] WATERS M T, WANG P, KORKARIC M, et al. GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis[J]. Plant Cell Online, 2009, 21(4):1109-1128. doi: 10.1105/tpc.108.065250
    [9] NAKAMURA H, MURAMATSU M, HAKATA M, et al. Ectopic overexpression of the transcription factor OsGLK1 induces chloroplast development in non-green rice cells[J]. Plant and Cell Physiology, 2009, 50(11):1933-1949. doi: 10.1093/pcp/pcp138
    [10] KOICHI K, DAICHI S, KO N, et al. Photosynthesis of root chloroplasts developed in Arabidopsis lines overexpressing GOLDEN2-LIKE transcription factors[J]. Plant and Cell Physiology, 2013, 54(8):1365-1377. doi: 10.1093/pcp/pct086
    [11] ZHANG J, ZHANG H, SRIVASTAVA A K, et al. Knock-down of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development[J]. Plant Physiology, 2018, 176(3):2082-2094. doi: 10.1104/pp.17.01432
    [12] RAUF M, ARIF M, DORTAY H, et al. ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription[J]. EMBO Reports, 2013, 14(4):382-388. doi: 10.1038/embor.2013.24
    [13] SONG Y, YANG C, GAO S, et al. Age-triggered and dark-induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5[J]. Molecular Plant, 2014, 7(12):1776-1787. doi: 10.1093/mp/ssu109
    [14] FANG Y, XIONG L. General mechanisms of drought response and their application in drought resistance improvement in plants[J]. Cellular and Molecular Life Sciences, 2014, 72(4):673-689. doi: 10.1007/s00018-014-1767-0
    [15] ZHANG L T, ZHANG Z S, GAO H Y, et al. Mitochondrial alternative oxidase pathway protects plants against photoinhibition by alleviating inhibition of the repair of photodamaged PSⅡ through preventing formation of reactive oxygen species in Rumex K-1 leaves[J]. Physiol Plantarum, 2011, 143(4):396-407. doi: 10.1111/j.1399-3054.2011.01514.x
    [16] LIU J, SHI D C. Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acid accumulations of sunflower in responses to salt and salt-alkaline mixed stress[J]. Photosynthetica, 2010, 48(1):127-134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cf907214c6d5deed5f6569113889eefd
    [17] ASHRAF M, HARRIS P J C. Photosynthesis under stressful environments:an overview[J]. Photosynthetica, 2013, 51(2):163-190. doi: 10.1007/s11099-013-0021-6
    [18] CHEN Y E, LIU W J, SU Y Q, et al. Different response of photosystem Ⅱ to short and long-term drought stress in Arabidopsis thaliana[J]. Physiologia Plantarum, 2016, 158(2):225-235. doi: 10.1111/ppl.12438
    [19] SAVITCH L V, SUBRAMANIAM R, ALLARD G C, et al. The GLK1 'regulon' encodes disease defense related proteins and confers resistance to Fusarium graminearum in Arabidopsis[J].Biochemical & Biophysical Research Communications, 2008, 359(2):234-238. doi: 10.1016/j.bbrc.2007.05.084
    [20] MURMU J, WILTON M, ALLARD G, et al. Arabidopsis GOLDEN2-LIKE (GLK) transcription factors activate jasmonic acid (JA)-dependent disease susceptibility to the biotrophic pathogen Hyaloperonospora arabidopsidis, as well as JA-independent plant immunity against the necrotrophic pathogen Botrytis cinerea[J]. Molecular Plant Pathology, 2014, 15(2):174-184. doi: 10.1111/mpp.12077
    [21] HAN X Y, LI P X, ZOU L J, et al. GOLDEN2-LIKE transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis[J]. Biochemical and Biophysical Research Communications, 2016, 477(4):626-632. doi: 10.1016/j.bbrc.2016.06.110
    [22] NI F, WU L, WANG Q, et al. Turnipyellow mosaic virus P69 interacts with and suppresses GLK transcription factors to cause pale-green symptoms in Arabidopsis[J]. Molecular Plant, 2017, 10(5):764-766. doi: 10.1016/j.molp.2016.12.003
    [23] TOWNSEND P D, DIXON C H, SLOOTWEG E J, et al. The intracellular immune receptor Rx1 regulates the DNA-binding activity of a Golden2-like transcription factor[J]. Journal of Biological Chemistry, 2018, 293(9):3218-3233. doi: 10.1074/jbc.RA117.000485
    [24] GUTIERREZ R A, STOKES T L, THUM K, et al. Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1[J]. Proceedings of the National Academy of Sciences, 2008, 105(12):4939-4944. doi: 10.1073/pnas.0800211105
    [25] NAGATOSHI Y, MITSUDA N, HAYASHI M, et al. GOLDEN 2-LIKE transcription factors for chloroplast development affect ozone tolerance through the regulation of stomatal movement[J]. Proceedings of the National Academy of Sciences, 2016, 113(15):4218-4223. doi: 10.1073/pnas.1513093113
    [26] AHMAD R, LIU Y, WANG T J, et al. GOLDEN2-LIKE transcription factors regulate WRKY40 expression in response to abscisic acid.[J]. Plant Physiology, 2019, 179(4):1844-1860. doi: 10.1104/pp.18.01466
    [27] 邓斌, 李玲, 李晓云, 等. AhHDA1异源表达影响拟南芥植株干旱性[J].华南师范大学学报(自然科学版), 2016, 48(5):52-57. doi: 10.6054/j.jscnun.2016.05.010

    DENG B, LI L, LI X Y, et al. Heterologous expression of AhHDA1 affects drought resistance of Arabidopsis plants[J]. Journal of South Chine Normal (Natural Science Edition), 2016, 48(5):52-57. doi: 10.6054/j.jscnun.2016.05.010
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1151
  • HTML全文浏览量:  580
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-02
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回