留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

靶向多肽功能化阳离子聚合物携载ZNF580质粒对内皮细胞增殖的影响

朵兴红 姜萧韩 周若琦 冯亚凯 刘晶

朵兴红, 姜萧韩, 周若琦, 冯亚凯, 刘晶. 靶向多肽功能化阳离子聚合物携载ZNF580质粒对内皮细胞增殖的影响[J]. 华南师范大学学报(自然科学版), 2020, 52(3): 62-69. doi: 10.6054/j.jscnun.2020045
引用本文: 朵兴红, 姜萧韩, 周若琦, 冯亚凯, 刘晶. 靶向多肽功能化阳离子聚合物携载ZNF580质粒对内皮细胞增殖的影响[J]. 华南师范大学学报(自然科学版), 2020, 52(3): 62-69. doi: 10.6054/j.jscnun.2020045
DUO Xinghong, JIANG Xiaohan, ZHOU Ruoqi, FENG Yakai, LIU Jing. The Effect of Targeted Polypeptide Functionalized Cationic Polymer Loaded with ZNF580 Plasmid on Proliferation of Endothelial Cells[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(3): 62-69. doi: 10.6054/j.jscnun.2020045
Citation: DUO Xinghong, JIANG Xiaohan, ZHOU Ruoqi, FENG Yakai, LIU Jing. The Effect of Targeted Polypeptide Functionalized Cationic Polymer Loaded with ZNF580 Plasmid on Proliferation of Endothelial Cells[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(3): 62-69. doi: 10.6054/j.jscnun.2020045

靶向多肽功能化阳离子聚合物携载ZNF580质粒对内皮细胞增殖的影响

doi: 10.6054/j.jscnun.2020045
基金项目: 

国家自然科学基金项目 51963018

青海省自然科学基金项目 2019-ZJ-7013

教育部"春晖计划"合作研究项目 Z2015049

青海民族大学高层次人才项目 2019XJG01

青海民族大学2020年度校级本硕博(学生)项目 2020XJXS12

详细信息
    通讯作者:

    朵兴红,副教授,Email:wlkdxh@163.com

  • 中图分类号: O632.6

The Effect of Targeted Polypeptide Functionalized Cationic Polymer Loaded with ZNF580 Plasmid on Proliferation of Endothelial Cells

  • 摘要: 通过原子转移自由基聚合(ATRP)方法制备了以多面体低聚倍半硅氧烷(POSS)为骨架的POSS-(PDMAEMA)8(PPD)星型阳离子聚合物,通过巯基-双键化学反应,将特异性靶向EA.hy926内皮细胞的CREDVW多肽键接在PPD阳离子聚合物末端,得到POSS-(PDMAEMA)8-PPEGMA-CREDVW(PPD-CREDVW)阳离子聚合物.在n(N)/n(P)=5时,PPD-CREDVW阳离子聚合物携载pEGFP-ZNF580(pDNA)质粒自组装形成粒径为125.67±3.31 nm、zeta电位为10.64±1.65 mV的PPD-CREDVW/pDNA基因复合胶束.细胞实验结果显示:与PPD/pDNA基因复合胶束相比,PPD-CREDVW/pDNA基因复合胶束携载基因能力强、细胞毒性低、易被细胞摄取,能够显著提高EA.hy926内皮细胞的转染,促进细胞的增殖.
  • 图  1  PPD-CREDVW星形聚合物的合成过程示意图

    Figure  1.  The process of PPD-CREDVW star-shape polymer synthesis

    图  2  DMSO-d6中PPD-CREDVW聚合物的结构与核磁共振氢谱

    Figure  2.  The structuree and 1H-NMR spectrum of PPD-CREDVW in DMSO-d6

    图  3  透析后PPD、PPD-CREDVW聚合物胶束的荧光光谱

    Figure  3.  The fluorescence emission spectra of PPD and PPD-CREDVW polymer micelles after dialysis

    图  4  不同n(N)/n(P)的基因复合胶束的电泳图像

    Figure  4.  The gel retardation assay picture of gene complexe micelles at different n(N)/n(P) ratios

    图  5  基因复合胶束的粒径和ζ电位

    Figure  5.  The size and zeta potential of gene complex micelles

    图  6  不同质量浓度基因复合胶束作用于EA.hy926细胞的相对细胞活力

    Figure  6.  The relative viability of EA.hy926 cells treated with different mass concentration gene complexe micelles

    图  7  基因复合胶束转染EA.hy926内皮细胞12 h和24 h的明场和暗场图像

    注:P1明场/暗场为图PEI (1.8 kDa)/pDNA基因复合胶束转染细胞12 h、P1’明场/暗场为PEI (1.8 kDa)/pDNA基因复合胶束转染细胞24 h;A明场暗场图为PPD/pDNA基因复合胶束转染细胞12 h、A’明场暗场图为PPD/pDNA基因复合胶束转染细胞24 h;B明场暗场图为PPD-CREDVW/pDNA基因复合胶束转染细胞12 h、B’明场暗场图为PPD-CREDVW/pDNA基因复合胶束转染细胞24 h;P2明场暗场图为PEI (25 kDa)/pDNA基因复合胶束转染细胞12 h、P2’明场暗场图为PEI (25 kDa)/pDNA基因复合胶束转染细胞24 h.

    Figure  7.  The fluorescence and corresponding bright-field images of EA.hy926 cells transfected by different gene complexes for 12 h and 24 h

    图  8  流式细胞分析测定基因复合胶束的细胞摄取率

    注:P1为PEI(1.8 kDa)/pDNA基因复合胶束转染细胞;P2为PEI(25 kDa)/pDNA基因复合胶束转染细胞;A为PPD /pDNA基因复合胶束转染细胞;B为PPD-CREDVW/pDNA基因复合胶束转染细胞.

    Figure  8.  The cell uptake of different gene complexes measured with flow cytometry

    表  1  聚合物胶束的粒径、ζ电位和多分散系数

    Table  1.   The size, ζ potential and polydispersion of polymer micelles

    样品名称 粒径/nm ζ电位/mV PDI
    PPD聚合物胶束 160.35±13.60 20.56±1.42 1.18±0.24
    PPD-CREDVW聚合物胶束 185.69±5.68 21.96±2.18 1.19±0.36
    注:PDI为多分散系数.
    下载: 导出CSV
  • [1] RINCON M Y, VANDENDRIESSCHE T, CHUAH M K. Gene therapy for cardiovascular disease:advances in vector development, targeting, and delivery for clinical translation[J]. Cardiovascular Research, 2015, 108(1):4-20. http://d.old.wanfangdata.com.cn/Conference/8438432
    [2] 姚琴, 谢柏臻, 裴一花.聚乙二醇-聚乙烯亚胺负载超顺磁纳米Fe3O4的合成及其基因转染应用[J].华南师范大学学报(自然科学版), 2018, 50(6):48-53. doi: 10.6054/j.jscnun.2018116

    YAO Q, XIE B Z, PEI Y H. Synthesis of Poly(ethylene glycol)-g-polyethyleneimine-supported superparamagnetic iron(Ⅳ) oxide nanoparticles and its application in gene delivery[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(6):48-53. doi: 10.6054/j.jscnun.2018116
    [3] WANG J, ZAIDI S S A, HASNAIN A, et al. Multi-targeting peptide functionalized star-shaped copolymers with comb-like structure and a POSS-core to effectively transfect endothelial cells[J]. ACS Biomaterials Science & Engineering, 2018, 4(6):2155-2168. doi: 10.1021/acsbiomaterials.8b00235
    [4] XU H F, MENG F H, ZHONG Z Y. Reversibly crosslinked temperature-responsive nano-sized polymersomes:synthesis and triggered drug release[J]. Journal of Materials Chemistry, 2009, 19(24):4183-4190. doi: 10.1039/b901141b
    [5] LI Y L, ZHU L, LIU Z Z, et al. Reversibily stabilized multifunctional dextran nanoparticles efficiently deliver doxorubicin into the nuclei of cancer cells[J]. Angewandte Chemie, 2009, 121(52):10098-10102. doi: 10.1002/ange.200904260
    [6] LIN C, ZHONG Z Y, LOK M C, et al. Random and block copolymers of bioreducible poly(amido amine)s with high- and low-basicity amino groups:study of DNA condensation and buffer capacity on gene transfection[J]. Journal of Controlled Release, 2007, 123(1):67-75. doi: 10.1016/j.jconrel.2007.07.006
    [7] 冯亚凯, 王君, 朵兴红, 等.基于POSS的星型多重靶向功能性基因载体及应用: 201810228237.3[P]. 2018-09-14.
    [8] ZHANG Q, YI W, WANG B, et al. Linear polycations by ring-opening polymerization as non-viral gene delivery vectors[J]. Biomaterials, 2013, 34(21):5391-5401. doi: 10.1016/j.biomaterials.2013.03.083
    [9] DUO X H, LI Q, WANG J, et al. Core/shell gene carriers with different lengths of PLGA chains to transfect endothelial cells[J]. Langmuir, 2017, 33(46):13315-13325. doi: 10.1021/acs.langmuir.7b02934
    [10] LV J, HAO X F, LI Q, et al. Star-shaped copolymer grafted PEI and REDV as a gene carrier to improve migration of endothelial cells[J]. Biomaterials Science, 2017, 5(3):511-522. doi: 10.1039/C6BM00856A
    [11] DUO X H, WANG J, LI Q, et al. CAGW peptide modified miodegradable ationic copolymer for effective gene delivery[J]. Polymers, 2017, 9(5):158-176. doi: 10.3390/polym9050158
    [12] YUAN T, WELJIE A M, VOGEL H J. Tryptophan fluorescence quenching by methionine and selenomethionine residues of calmodulin:orientation of peptide and protein binding[J]. Biochemistry, 1998, 37(9):3187-3195. doi: 10.1021/bi9716579
    [13] HAO X F, LI Q, LV J, et al. CREDVW-linked polymeric micelles as a targeting gene transfer vector for selective transfection and proliferation of endothelial cells[J]. ACS Applied Materials & Interfaces, 2015, 7:12128-12140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=13fe2ad486458486fa9e9cc0908b84ba
    [14] YANG Y Y, WANG X, HU Y, et al. Bioreducible POSS-cored star-shaped polycation for efficient gene delivery[J]. ACS Applied Materials & Interfaces, 2013, 6(2):1044-1052. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3e57aab6e6f7450d8598025084f550f6
    [15] PU Y J, HOU Z, KHIN M M, et al. Synthesis and antibacterial study of sulfobetaine/quaternary ammonium-modified star-shaped Poly[2-(dimethylamino)ethyl methacrylate]-based copolymers with an inorganic core[J]. Biomacromolecules, 2017, 18(1):44-55. doi: 10.1021/acs.biomac.6b01279
    [16] CAI X J, JIN R R, WANG J L, et al. Bioreducible fluorinated peptide dendrimers capable of circumventing various physiological barriers for highly efficient and safe gene delivery[J]. ACS Applied Materials & Interfaces, 2016, 8(9):5821-5832. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=33814509d3e10b70c98948ea345e6633
    [17] SUN H Y, WEI S P, XU R C, et al. Sphingosine-1-phosphate induces human endothelial VEGF and MMP-2 production via transcription factor ZNF580:novel insights into angiogenesis[J]. Biochemical and Biophysical Research Communications, 2010, 395(3):361-366. doi: 10.1016/j.bbrc.2010.04.019
    [18] SHI C C, YAO F L, LI Q, et al. Regulation of the endothelialization by human vascular endothelial cells by ZNF580 gene complexed with biodegradable microparticles[J]. Biomaterials, 2014, 35(25):7133-7145. doi: 10.1016/j.biomaterials.2014.04.110
    [19] NAKASE I, AKITA H, KOGURE K, et al. Efficient intracellular delivery of nucleic acid pharmaceuticals using cell-penetrating peptides[J]. Accounts of Chemical Research, 2011, 45(7):1132-1139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4948f909a631c40e60c4d54ef3f0138d
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  811
  • HTML全文浏览量:  438
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-30
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回