留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

花状Ni(OH)2微球的制备及其对尿酸的快速检测

赵小铷 闫炳东 涂进春

赵小铷, 闫炳东, 涂进春. 花状Ni(OH)2微球的制备及其对尿酸的快速检测[J]. 华南师范大学学报(自然科学版), 2020, 52(3): 42-47. doi: 10.6054/j.jscnun.2020042
引用本文: 赵小铷, 闫炳东, 涂进春. 花状Ni(OH)2微球的制备及其对尿酸的快速检测[J]. 华南师范大学学报(自然科学版), 2020, 52(3): 42-47. doi: 10.6054/j.jscnun.2020042
ZHAO Xiaoru, YAN Bingdong, TU Jinchun. Synthesis of Flower-Like Ni(OH)2 Microsphere for the Rapid Detection of Uric Acid[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(3): 42-47. doi: 10.6054/j.jscnun.2020042
Citation: ZHAO Xiaoru, YAN Bingdong, TU Jinchun. Synthesis of Flower-Like Ni(OH)2 Microsphere for the Rapid Detection of Uric Acid[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(3): 42-47. doi: 10.6054/j.jscnun.2020042

花状Ni(OH)2微球的制备及其对尿酸的快速检测

doi: 10.6054/j.jscnun.2020042
基金项目: 

国家自然科学基金项目 31160030

国家自然科学基金项目 21301042

详细信息
    通讯作者:

    涂进春,教授,Email:tujinchun@hainu.edu.cn

  • 中图分类号: O69

Synthesis of Flower-Like Ni(OH)2 Microsphere for the Rapid Detection of Uric Acid

  • 摘要: 采用微波辅助水热法制备了均匀分级的氢氧化镍(Ni(OH)2)微球,通过X射线衍射(XRD)仪、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对Ni(OH)2的组成和形貌进行了表征. Ni(OH)2微球的平均直径约1.6 μm,复杂的花状结构使其具有较大的比表面积.将微球制备成Ni(OH)2修饰的玻碳电极,并将其用于0.1 mol/L NaOH溶液中尿酸(UA)的检测,该电极具有良好的电催化活性.这种传感器表现出较宽的线性范围(0.1~1.5 mmol/L)和高灵敏度(475.71 μA ·L/(mmol ·cm2)),且有较低的检出限(1.8 μmol/L).利用电化学测试对内源性干扰物进行检验,发现Ni(OH)2微球修饰电极对UA的选择性较好.结果表明:Ni(OH)2微球在研发无酶尿酸传感器方面具有重要的应用潜力.
  • 图  1  Ni(OH)2的合成示意图

    Figure  1.  The diagram of Ni(OH)2 synthesis

    图  2  Ni(OH)2的XRD谱

    Figure  2.  The XRD patten of Ni(OH)2

    图  3  Ni(OH)2的SEM与TEM图

    Figure  3.  The SEM and TEM images of Ni(OH)2

    图  4  Ni(OH)2的氮气吸脱附曲线和孔径分布

    Figure  4.  The nitrogen adsorption and desorption curve and pore size distribution of Ni(OH)2

    图  5  在NaOH溶液中存在和不存在尿酸情况下的循环伏安曲线

    注:NaOH溶液浓度为0.1 mol/L;尿酸浓度为0.1 mmol/L;扫描速率为50 mV/s.

    Figure  5.  The CVs of NaOH solutions in absence and presence of UA

    图  6  Ni(OH)2电极在0.1 mol/L NaOH溶液中以不同扫描速率(10~100 mV/s)的循环伏安曲线

    Figure  6.  The CVs of the Ni(OH)2 electrode in 0.1 mol/L NaOH solutions at different scan rates(10~100 mV/s)

    图  7  氧化峰值电流与v1/2的线性拟合

    Figure  7.  The linear fitting curve of oxidation peak current vs. the v1/2

    图  8  Ni(OH)2电极的稳态响应曲线

    注:施加电压为0.6 V,将UA连续注入0.1 mol/L NaOH溶液中的同时进行稳态响应测试.

    Figure  8.  The typical steady-state responses of the Ni(OH)2 electrode

    图  9  不同浓度UA的电流响应校准曲线

    Figure  9.  The calibration curve of amperometric responses to different concentration of UA

    图  10  含不同干扰剂的UA溶液中Ni(OH)2电极的电流响应

    注:在1.5 mmol/L UA中分别添加多巴胺(DA, 0.15 mmol/L)、抗坏血酸(AA, 0.15 mmol/L)和肌酐(Cre, 0.15 mmol/L)后进行检测.

    Figure  10.  The amperometric response of the Ni(OH)2 electrodes in the UA solution with different interfering agents

  • [1] BECKER M A, JOLLY M. Hyperuricemia and associated diseases[J]. Rheumatic Disease Clinics of North America, 2006, 32:275-293. doi: 10.1016/j.rdc.2006.02.005
    [2] AMBARSARI C G, CAHYADI D, SARI L, et al. Late diagnosis of Lesch-Nyhan disease complicated with end-stage renal disease and tophi burst:a case report[J]. Renal Failure, 2020, 42(1):113-121. doi: 10.1080/0886022X.2020.1713805
    [3] ERDEN P E, KLÇ E. A review of enzymatic uric acid biosensors based on amperometric detection[J]. Talanta, 2013, 107:312-323. doi: 10.1016/j.talanta.2013.01.043
    [4] RAMACHANDRAN R, CHEN T W, CHEN S M. et al. A review of the advanced developments of electrochemical sensors for the detection of toxic and bioactive molecules[J]. Inorganic Chemistry Frontiers, 2019, 6(12):3418-3439. doi: 10.1039/C9QI00602H
    [5] CHU G L, WANG G X, YAO Y, et al. A novel non-enzyme sensor based on a PDDA-RGO/Pt NPs nanocomposite for electrochemical detection of ascorbic acid[J]. International Journal of Electrochemical Science, 2019, 14(12):11406-11418. http://cn.bing.com/academic/profile?id=05726abb578a9c55ebe607488dc5c767&encoded=0&v=paper_preview&mkt=zh-cn
    [6] HAYAT A, MANE S K B, SHAISHTA N, et al. Nickel oxide nano-particles on 3D nickel foam substrate as a non-enzymatic glucose sensor[J]. Journal of the Electrochemical Society, 2019, 116:B1602-B1611. http://cn.bing.com/academic/profile?id=f8389dde3285218e1426811615ef1e2a&encoded=0&v=paper_preview&mkt=zh-cn
    [7] ZHANG X J, ZHENG J B. Hollow carbon sphere supported Ag nanoparticles for promoting electrocatalytic performance of dopamine sensing[J]. Sensors and Actuators B:Chemcial, 2019, 290:648-655. doi: 10.1016/j.snb.2019.04.040
    [8] HU G, MA Y, GUO Y, et al. Electrocatalytic oxidation and simultaneoun electrodes determination of uric acid and ascorbic acid on the gold nanoparticles-modified glassy carbon[J]. Electrochimica Acta, 2008, 53(22):6610-6615. doi: 10.1016/j.electacta.2008.04.054
    [9] RAMAKRISHNAN S, PRADEEP K, RAGHUL A, et al. One-step synthesis of Pt-decorated graphene-carbon nanotubes for the electrochemical sensing of dopamine, uric acid and ascorbic acid[J]. Analytical Methods, 2015, 7(2):779-786. doi: 10.1039/C4AY02487G
    [10] WANG X J, XIA X A, ZHANG X G, et al. Nonenzymatic glucose sensor based on Ag & Pt hollow nanoparticles supported on TiO2 nanotubes[J]. Materials Science and Engineering C:Materials for Biological Applications, 2017, 80:174-179. doi: 10.1016/j.msec.2017.05.137
    [11] JANYASUPAB M, LIU C W, ZHANG Y, et al. Bimetallic Pt-M (M=Cu, Ni, Pd, and Rh) nanoporous for H2O2 based amperometric biosensors[J]. Sensors and Actuators B:Chemical, 2013, 179:209-214. doi: 10.1016/j.snb.2012.09.099
    [12] WANG M, MA J W, CHANG Q B, et al. Fabrication of a novel ZnO-CoO/rGO nanocomposite for nonenzymatic detection of glucose and hydrogen peroxide[J]. Ceramics International, 2018, 44(5):5250-5256. doi: 10.1016/j.ceramint.2017.12.136
    [13] LI C, SU Y, ZHANG S, et al. An improved sensitivity nonenzymatic glucose biosensor based on a CuxO modified electrode[J]. Biosensors and Bioelectronics, 2010, 26(2):903-907. doi: 10.1016/j.bios.2010.07.007
    [14] LI J, HU H F, LI H Y, et al. Recent developments in electrochemical sensors based on nanomaterials for determining glucose and its byproduct H2O2[J]. Journal of Materials Science, 2017, 52(17):10455-10469. doi: 10.1007/s10853-017-1221-4
    [15] MAO W W, HE H P, SUN P C, et al. Three-dimensional porous nickel frameworks anchored with cross-linked Ni(OH)2 nanosheets as a highly sensitive nonenzymatic glucose sensor[J]. ACS Applied Materials and Interfaces 2018, 10(17):15088-15095. doi: 10.1021/acsami.8b03433
    [16] JIANG Y M, YU S J, LI J J, et al. Improvement of sensitive Ni(OH)2 nonenzymatic glucose sensor based on carbon nanotube/polyimide membrane[J]. Carbon, 2013, 63:367-375. doi: 10.1016/j.carbon.2013.06.092
    [17] YANG L X, ZHU Y J, TONG H, et al. Hydrothermal synthesis of nickel hydroxide nanostructures in mixed solvents of water and alcohol[J]. Journal of Solid State Chemistry, 2007, 180(7):2095-2101. doi: 10.1016/j.jssc.2007.05.009
    [18] HU Y J, HUANG M D, CHEN C Y, et al. Microwave-assisted fabrication of nickel hydroxide graphene nanostructures and their application in electrochemical detection of glucose[J]. Chemical Journal of Chinese Universities-Chinese, 2016, 37(3):468-474. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdxxhxxb201603009
    [19] ZHU L P, LIAO G H, YANG Y, et al. Self-assembled 3D flower-like hierarchical β-Ni(OH)2 hollow architectures and their in situ thermal conversion to NiO[J]. Nanoscale Research Letter, 2009, 4:550-557. doi: 10.1007/s11671-009-9279-9
    [20] SUNDAR S, KWON S J, VENKATACHALAM G. Agneto-biosensor for the detection of uric acid using citric acid-capped iron oxide nanoparticles[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(4):2144-2153. doi: 10.1166/jnn.2020.17313
    [21] DEMIRKAN B, BOZKURT S, SAVK A. Composites of bimetallic platinum-cobalt alloy nanoparticles and reduced graphene oxide for electrochemical determination of ascorbic acid, dopamine, and uric acid[J]. Scientific Reports, 2019, 9:12258/1-9. http://cn.bing.com/academic/profile?id=8a84e4c046b8e4e1414021ae51e80868&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中
图(10)
计量
  • 文章访问数:  1117
  • HTML全文浏览量:  662
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-16
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回