留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于密度泛函理论对咔咯-吩噻嗪二元体激发态电荷转移的研究

高龙江 刘海洋

高龙江, 刘海洋. 基于密度泛函理论对咔咯-吩噻嗪二元体激发态电荷转移的研究[J]. 华南师范大学学报(自然科学版), 2020, 52(3): 29-34. doi: 10.6054/j.jscnun.2020040
引用本文: 高龙江, 刘海洋. 基于密度泛函理论对咔咯-吩噻嗪二元体激发态电荷转移的研究[J]. 华南师范大学学报(自然科学版), 2020, 52(3): 29-34. doi: 10.6054/j.jscnun.2020040
GAO Longjiang, LIU Haiyang. A Study of the Excited-State Charge Transfer of Corrole-Phenothiazine Dyads Based on the Density Functional Theory[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(3): 29-34. doi: 10.6054/j.jscnun.2020040
Citation: GAO Longjiang, LIU Haiyang. A Study of the Excited-State Charge Transfer of Corrole-Phenothiazine Dyads Based on the Density Functional Theory[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(3): 29-34. doi: 10.6054/j.jscnun.2020040

基于密度泛函理论对咔咯-吩噻嗪二元体激发态电荷转移的研究

doi: 10.6054/j.jscnun.2020040
基金项目: 

国家自然科学基金项目 21671068

详细信息
    通讯作者:

    刘海洋,教授,Email:chhyliu@scut.edu.cn

  • 中图分类号: O641

A Study of the Excited-State Charge Transfer of Corrole-Phenothiazine Dyads Based on the Density Functional Theory

  • 摘要: 采用密度泛函理论(DFT)对咔咯与吩噻嗪形成的F10C-PTZ供体-受体体系进行了计算,包括几何结构、前线分子轨道、电子-空穴分析、吸收光谱等基态和激发态性质;探讨了二元体间隔基和取代基位置对电荷转移激发态的影响.结果表明:F10C-PTZ二元体存在供体-受体间的电荷转移激发态;间隔基的C—C键会阻碍供体-受体的电荷转移,而间隔基的C—C键可增强体系的共轭性,有利于供体-受体的电荷转移;当供体取代位置与五氟苯基相邻时,咔咯上五氟苯基的拉电子效应使得供体-受体激发的电荷转移更易于发生.
  • 图  1  PTZ、F10C、F10C-PTZ二元体的分子结构

    Figure  1.  The molecular structure of PTZ, F10C and F10C-PTZ dyads

    图  2  PTZ、F10C、F10C-PTZ二元体的前线分子轨道及能级

    Figure  2.  The frontier orbitals and their energy levels of PTZ, F10C and F10C-PTZ dyads

    图  3  F10C、PTZ和F10C-PTZ二元体的模拟吸收光谱

    Figure  3.  The calculated absorption spectra of F10C, PTZ and F10C-PTZ dyads

    图  4  二元体S1~S10的电子-空穴分布图

    注:绿色电子云和蓝色电子云分别代表电子和空穴分布.

    Figure  4.  The electron-hole distribution for S1~S10 of F10C-PTZ dyads

    表  1  F10C-PTZ二元体的优化几何结构参数

    Table  1.   The optimized geometrical structure parameters of F10C-PTZ dyads

    二元体 d4-5/nm D3, 4, 5, 6/(°) dN-C*/nm D1, S, N, 2/(°) DN, N, N, N/(°)
    1 0.149 4 120.507 0.137 7 136.996 3.270
    2 0.152 1 87.524 0.137 8 136.458 1.738
    3 0.147 7 133.617 0.137 8 137.276 0.787
    4 0.147 0 139.881 0.137 7 136.864 1.150
    5 0.147 6 129.539 0.137 6 137.264 3.633
    6 0.147 4 134.854 0.137 6 137.255 2.505
    7 0.147 2 139.481 0.137 7 136.940 1.824
    注:*表示平均值;d为键长;D为二面角.
    下载: 导出CSV

    表  2  F10C-PTZ二元体的S1-10的供体-受体净电荷转移结果

    Table  2.   The donor-acceptor net charge transfer results for S1-10 of F10C-PTZ dyads  e

    二元体 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
    1 0.038 93 0.004 88 0.051 05 0.137 70 0.723 30 0.153 10 0.391 14 0.002 22 0.183 48 0.191 26
    2 0.013 84 -0.000 74 0.000 03 -0.010 59 0.988 87 -0.003 42 0.134 69 0.002 86 0.796 66 -0.010 19
    3 0.093 77 0.017 16 0.057 31 0.121 10 0.482 03 0.389 21 0.008 11 0.083 89 0.444 92 -0.109 20
    4 0.014 96 -0.004 33 0.064 60 0.000 27 0.673 71 0.205 89 0.317 75 0.324 71 0.176 69 0.204 08
    5 -0.009 30 0.003 18 0.206 31 0.537 86 0.028 98 0.018 81 0.455 39 0.080 45 0.104 56 0.495 10
    6 0.003 43 0.011 74 0.253 26 0.485 37 0.023 49 0.000 60 0.532 71 0.052 24 0.110 99 -0.011 76
    7 0.010 79 0.008 94 0.099 38 0.126 40 0.576 41 -0.009 78 0.128 79 0.461 99 0.092 96 0.449 48
    注:负号表示受体到供体的电子转移.
    下载: 导出CSV
  • [1] MITCHELL P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation[J]. Biological Reviews, 1966, 41(3):445-501. doi: 10.1111/j.1469-185X.1966.tb01501.x
    [2] SLATER E. An evaluation of the Mitchell hypothesis of chemiosmotic coupling in oxidative and photosynthetic phosphorylation[J]. European Journal of Biochemistry, 1967, 1(3):317-326. doi: 10.1111/j.1432-1033.1967.tb00076.x
    [3] CHITTA R, D'SOUZA F. Self-assembled tetrapyrrole-full-erene and tetrapyrrole-carbon nanotube donor-acceptor hybrids for light induced electron transfer applications[J]. Journal of Materials Chemistry, 2008, 18(13):1440-1471. doi: 10.1039/b717502g
    [4] KUMAR S, SINGH M, JOU J H, et al. Trend breaking substitution pattern of phenothiazine with acceptors as a rational design platform for blue emitters[J]. Journal of Materials Chemistry C, 2016, 4(28):6769-6777. doi: 10.1039/C6TC01367H
    [5] 王婷婷, 曾和平.富勒烯C60-多芳胺类吡咯烷衍生物的合成及其理论研究[J].华南师范大学学报(自然科学版), 2005(1):66-70. doi: 10.3969/j.issn.1000-5463.2005.01.014

    WANG T T, ZENG H P. Synthesis and theoretical study of the fulleropyrrolidines containing polyarylamine dyads[J]. Journal of South China normal University(Natural Science Edition), 2005(1):66-70. doi: 10.3969/j.issn.1000-5463.2005.01.014
    [6] JOHNSON A, KAY I. 306 Corroles. Part I. Synthesis[J]. Journal of the Chemical Society (Resumed), 1965, 1620-1629.
    [7] BEVILACQUA A C, KOHLER M H, PIQUINI P C. Cor-role-fullerene dyads:stability, photophysical, and redox properties[J]. The Journal of Physical Chemistry C, 2019, 123(34):20869-20876. doi: 10.1021/acs.jpcc.9b04321
    [8] CHENG F, WANG H H, ALI A, et al. Photophysical properties and photodynamic anti-tumor activity of corrole-coumarin dyads[J]. Journal of Porphyrins and Phthalocyanines, 2018, 22:886-898. doi: 10.1142/S1088424618500724
    [9] GIRIBABU L, JAIN K, SUDHAKAR K, et al. Light induced intramolecular electron and energy transfer events in rigidly linked borondipyrromethene:corrole dyad[J]. Journal of Luminescence, 2016, 177:209-218. doi: 10.1016/j.jlumin.2016.03.038
    [10] SAILER M, GROPEANU R A, MVLLER T J. Practical synthesis of iodo phenothiazines. A facile access to electrophore building blocks[J]. The Journal of Organic Chemistry, 2003, 68(19):7509-7512. doi: 10.1021/jo034555z
    [11] FRANZ A W, POPA L N, MVLLER T J. First synthesis and electronic properties of cyano(oligo) phenothiazines[J]. Tetrahedron Letters, 2008, 49(20):3300-3303. doi: 10.1016/j.tetlet.2008.03.071
    [12] FRISCH M, TRUCKS G W, SCHLEGEL H B, et al. Gaussian09, Revision D.01[CP]. Gaussian, Inc. Wallingford CT. 2013. http://www.gaussian.com.
    [13] CASIDA M E, JAMORSKI C, CASIDA K C, et al. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory:characterization and correction of the time-dependent local density approximation ionization threshold[J]. The Journal of Chemical Physics, 1998, 108(11):4439-4449. doi: 10.1063/1.475855
    [14] BAUERNSCHMITT R, AHLRICHS R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory[J]. Chemical Physics Letters, 1996, 256(4/5):454-464. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e622f882041fbf27b39e506ab7bea086
    [15] LU T, CHEN F. Multiwfn:a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5):580-592. doi: 10.1002/jcc.22885
    [16] HUMPHREY W, DALKE A, SCHULTEN K. VMD:visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1):33-38. doi: 10.1016/0263-7855(96)00018-5
    [17] 王家敏, 史蕾, 刘海洋.咔咯及其金属配合物与DNA的作用和抗肿瘤活性[J].化学进展, 2015, 27(6):755-762. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz201506010

    WANG J M, SHI L, LIU H Y. Theinteraction of corrole and its metal complex with DNA and their anti-tumor activity[J]. Progress in Chemistry, 2015, 27(6):755-762. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz201506010
    [18] BELVERDI A R, JAMSHIDI M B, TAHERPOUR A A, et al. Novel donor-acceptor non-fullerene metal-organic solar cells:a first DFT and TD-DFT study[J]. Physica B:Condensed Matter, 2018, 542:37-43. doi: 10.1016/j.physb.2018.05.003
    [19] LU T. Multiwfn Manual[EB/OL]. (2019-05-21) http://sobereva.com/multiwfn.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  1221
  • HTML全文浏览量:  599
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-12
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回