留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

室温原子气室中基于电磁诱导透明和吸收效应的微波电场测量

刘笑宏 梁洁 陈常军 黄巍 廖开宇

刘笑宏, 梁洁, 陈常军, 黄巍, 廖开宇. 室温原子气室中基于电磁诱导透明和吸收效应的微波电场测量[J]. 华南师范大学学报(自然科学版), 2020, 52(3): 10-16. doi: 10.6054/j.jscnun.2020037
引用本文: 刘笑宏, 梁洁, 陈常军, 黄巍, 廖开宇. 室温原子气室中基于电磁诱导透明和吸收效应的微波电场测量[J]. 华南师范大学学报(自然科学版), 2020, 52(3): 10-16. doi: 10.6054/j.jscnun.2020037
LIU Xiaohong, LIANG Jie, CHEN Changjun, HUANG Wei, LIAO Kaiyu. Microwave Electric Field Measurement Based on Electromagnetically-Induced Transparency and Absorption in Atomic Vapor Cell at Room Temperature[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(3): 10-16. doi: 10.6054/j.jscnun.2020037
Citation: LIU Xiaohong, LIANG Jie, CHEN Changjun, HUANG Wei, LIAO Kaiyu. Microwave Electric Field Measurement Based on Electromagnetically-Induced Transparency and Absorption in Atomic Vapor Cell at Room Temperature[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(3): 10-16. doi: 10.6054/j.jscnun.2020037

室温原子气室中基于电磁诱导透明和吸收效应的微波电场测量

doi: 10.6054/j.jscnun.2020037
基金项目: 

国家自然科学基金项目 11804104

广东省自然科学基金-博士启动项目 2018A030310528

广东省自然科学基金项目 2015A030310277

详细信息
    作者简介:

    黄巍,讲师,Email:huangwei00@tsinghua.org.cn

    廖开宇,讲师,Email:kaiyu.liao@foxmail.com

  • 中图分类号: O562.3+2

Microwave Electric Field Measurement Based on Electromagnetically-Induced Transparency and Absorption in Atomic Vapor Cell at Room Temperature

  • 摘要: 基于里德堡原子的量子干涉效应,对微波电场的溯源进行测量.该方法使用室温铷原子气室作为探头,通过对双光子电磁诱导透明、三光子电磁诱导透明和三光子电磁诱导吸收效应的Autler-Townes分裂进行理论分析,并讨论了原子散粒噪声的测量极限.该方法不仅适用于微波电场的可溯源、自校准测量,还可被用于微波电场的亚波长成像以及矢量测量,将为进一步实现原子微波探头的小型化和集成化提供参考.
  • 图  1  四能级系统的能级结构和实验装置

    Figure  1.  The energy level structure and experimental setup of a four-level system

    图  2  探测光透射率随失谐量Δp的变化和耦合光透射率随失谐量Δc的变化

    注:a~e曲线中ΩMW分别为0、5、15、25、35 MHz.

    Figure  2.  The variation of probe and coupling light transmittance with detuning

    图  3  五能级系统结构和实验装置

    Figure  3.  The energy level structure and experimental setup of a five-level system

    图  4  Δd=0时不同模型下的EIA

    Figure  4.  The EIA under different models with Δd=0

    图  5  EIA和EIT在不同ΩMW下的AT分裂及相应电场强度

    注:a~f曲线中ΩMW分别为0、40、80、120、160、200 MHz.

    Figure  5.  The electric field intensity corresponding to AT-splitting under differentΩMW

  • [1] OSTERWALDER A, MERKT F. Using high Rydberg states as electric field sensors[J]. Physical Review Letters, 1999, 82(9):1831-1834. doi: 10.1103/PhysRevLett.82.1831
    [2] SEDLACEK J A, SCHWETTMANN A, KVBLER H, et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 2012, 8(11):819-824. doi: 10.1038/nphys2423
    [3] GORDON J A, HOLLLOWAY C L, SCHWARZKOPF A, et al. Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms[J]. Applied Physics Letters, 2014, 105(2):1683/1-5. http://cn.bing.com/academic/profile?id=23a072a6498686a956dff5a4b1112349&encoded=0&v=paper_preview&mkt=zh-cn
    [4] ANDERSON D A, MILLER S A, GORDON J A, et al. Optical measurements of srong microwave fields with Rydberg atoms in a vapor cell[J]. Physical Review A, 2016, 5(3):034003/1-7. doi: 10.1103/PhysRevApplied.5.034003
    [5] SIRKO L, ARNDT M, KOCH P M, et al. Microwave ionization of Rb Rydberg atoms:frequency dependence[J]. Physical Review A, 1994, 49(5):3831-3841. doi: 10.1103/PhysRevA.49.3831
    [6] JIAO Y, HAO L, HAN X, et al. Floquet States[J]. Physical Review Applied, 2017, 8(1):014028/1-7. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0226059951/
    [7] JOHNSON L A M, MAJEED H O, SANGUINETTI B, et al. Absolute frequency measurements of 85Rb nF7/2 Rydberg states using purely optical detection[J]. New Journal of Physics, 2010, 12(6):063028/1-12. doi: 10.1088/1367-2630/12/6/063028
    [8] CARR C, TANASITTIKOSOL M, SARGSYAN A, et al. Three-photon electromagnetically induced transparency using Rydberg states:erratum[J]. Optics Letters, 2012, 37(18):3858-3860. doi: 10.1364/OL.37.003858
    [9] SHAFFER J P, KVBLER H. Electromagnetically-induced transparency, absorption, and microwave field sensing in a Rb vapor cell with a three-color all-infrared laser system[J]. Physical Review A, 2019, 100(6):063427/1-9. doi: 10.1103/PhysRevA.100.063427
    [10] GALLAGHER T F. Rydberg Atoms[M]. Cambridge:Cambridge University Press, 1994.
    [11] ANDREWS D L. Introduction to Quantum optics:from the semi-classical approach to quantized light, by Gilbert Grynberg, Alain aspect and claude fabre[J]. Contemporary Physics, 2011, 52(6):627-628. doi: 10.1080/00107514.2011.604134
    [12] ZHANG Z M. Quantum Optics[M]. Beijing:Science Press, 2012:233.
    [13] BORN M, WOLF E. Principles of optics electromagnetic theory of propagation, interference and diffraction of light[J]. Physics Today, 2000, 53(10):77-78. http://cn.bing.com/academic/profile?id=09befc06e406434e466d623dddb03480&encoded=0&v=paper_preview&mkt=zh-cn
    [14] ŠIBALI C ' N, ADAMS C S. Rydberg Physics[M]. Bristol:IOP Publishing, 2018.
    [15] BERMAN P R, MALINOVSKY V S. Principles of laser spectroscopy and quantum optics[M].Princeton:Princeton University Press, 2011.
    [16] KITCHING J, KNAPPE S, DONLEY E A. Atomic sensors-a review[J]. IEEE Sensors Journal, 2011, 11(9):1749-1758. doi: 10.1109/JSEN.2011.2157679
  • 加载中
图(5)
计量
  • 文章访问数:  1293
  • HTML全文浏览量:  671
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-15
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回