The Optimal Dividend Problem in Dual Model with Capital Injections by Stochastic Interest Rates
-
摘要: 在红利有界的条件下, 讨论了复合二项对偶模型中带比例交易费再注资且分红贴现利率随机变化的最优分红问题; 运用压缩映射不动点原理证明了该最优分红问题的最优值函数是一个离散的HJB方程的唯一解, 得到了最优分红策略和最优值函数的计算方法; 根据分红策略的一些性质, 得到了该最优值函数的可无限逼近的上界和下界,并采用了Bellman递归算法得到最优值函数和最优分红策略的数值解,从而得到最优分红算法.数值实例结果表明:该最优分红策略是有效的.这为公司的决策者在兼顾公司正常运营和股东利益而进行红利决策时提供了理论依据.Abstract: Under the dividend bounded, the problem of optimal dividend payment in compound binomial dual model with proportional transaction cost capital injections and stochastic interest rates was discussed. It was proved with the fixed-point principle of contraction mapping that the optimal value function of this optimal dividend problem was the unique solution to a discrete Hamilton-Jacobi-Bellman(HJB) equation. The algorithm was obtained for the optimal dividend strategy and the optimal value function. According to some properties of the dividend strategy, the upper and lower bounds of the optimal value function were derived, and the numerical solutions to the optimal value function and the optimal dividend strategy was obtained with the Bellman recursive algorithm, and the optimal dividend algorithm was obtained. The numerical result shows that the optimal dividend strategy is effective. A theoretical basis for the decision-maker to make dividend policy in consideration of the normal operation of the company and interests of shareholders is provided.
-
Key words:
- optimal dividend /
- stochastic interest rates /
- capital injections /
- HJB equation
-
表 1 最优分红策略φi*(u) (i=1, 2, 3, C=5)
Table 1. The optimal dividend strategy φi*(u) (i=1, 2, 3, C=5)
u β=0 β=0.2 β=0.4 β=0.6 β=1.2 不注资 i=1 i=2 i=3 i=1 i=2 i=3 i=1 i=2 i=3 i=1 i=2 i=3 i=1 i=2 i=3 i=1 i=2 i=3 0, 1, …, 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 12 2 2 2 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 13 3 3 3 3 3 3 2 1 1 0 0 0 0 0 0 0 0 0 14 4 4 4 4 4 4 3 2 2 0 0 0 0 0 0 0 0 0 15 5 5 5 5 5 5 4 3 3 0 0 0 0 0 0 0 0 0 16 5 5 5 5 5 5 5 4 4 1 1 1 0 0 0 0 0 0 17 5 5 5 5 5 5 5 5 5 2 2 2 0 0 0 0 0 0 18 5 5 5 5 5 5 5 5 5 3 3 3 0 0 0 0 0 0 19 5 5 5 5 5 5 5 5 5 4 4 4 0 0 0 0 0 0 20 5 5 5 5 5 5 5 5 5 5 5 5 0 0 0 0 0 0 21 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 22 5 5 5 5 5 5 5 5 5 5 5 5 2 2 2 2 2 2 23 5 5 5 5 5 5 5 5 5 5 5 5 3 3 3 3 3 3 24 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 25, 26, … 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 表 2 最优值函数
Table 2. The optimal value function
u β=0 β=0.2 β=1.2 不注资 V1*(u) V2*(u) V3*(u) V1*(u) V2*(u) V3*(u) V1*(u) V2*(u) V3*(u) W1*(u) W2*(u) W3*(u) 0 34.650 1 35.061 4 35.033 0 29.566 9 29.938 8 29.912 0 8.898 5 9.126 3 9.102 4 10.566 7 10.673 5 10.667 2 1 35.650 1 36.061 4 36.033 0 30.766 9 31.138 8 31.112 0 11.098 5 11.326 3 11.302 4 11.740 8 11.859 4 11.852 5 2 36.650 1 37.061 4 37.033 0 31.966 9 32.338 8 32.312 0 13.298 5 13.526 3 13.502 4 13.045 4 13.177 2 13.169 4 3 37.650 1 38.061 4 38.033 0 33.166 9 33.538 8 33.512 0 15.498 5 15.726 3 15.702 4 14.494 9 14.641 3 14.632 7 4 38.650 1 39.061 4 39.033 0 34.366 9 34.738 8 34.712 0 17.698 5 17.926 3 17.902 4 16.105 4 16.268 1 16.258 5 5 39.650 1 40.061 4 40.033 0 35.566 9 35.938 8 35.912 0 19.898 5 20.126 3 20.102 4 20.153 1 20.357 0 20.344 9 6 40.563 5 40.981 1 40.953 3 36.611 9 36.990 9 36.964 8 21.621 3 21.861 2 21.838 3 21.514 1 21.731 7 21.718 8 7 41.471 9 41.896 0 41.868 7 37.645 3 38.031 5 38.006 1 23.301 5 23.553 2 23.531 4 22.928 8 23.160 6 23.146 9 8 42.374 9 42.805 5 42.778 7 38.665 7 39.059 2 39.034 4 24.934 2 25.197 8 25.176 8 24.392 3 24.638 7 24.624 2 9 43.271 8 43.708 9 43.682 6 39.671 9 40.072 7 40.048 5 26.514 1 26.789 7 26.769 4 25.897 9 26.159 4 26.144 0 10 44.161 9 44.605 7 44.579 8 40.662 1 41.070 4 41.046 6 28.035 4 28.322 8 28.303 1 27.919 5 28.201 3 28.184 9 11 45.026 6 45.477 8 45.452 1 41.602 2 42.018 6 41.995 0 29.391 2 29.691 0 29.671 3 29.159 1 29.453 2 29.436 1 12 45.888 8 46.347 3 46.321 8 42.532 9 42.957 1 42.933 7 30.704 5 31.016 4 30.996 6 30.402 4 30.708 8 30.691 0 13 46.748 7 47.214 4 47.189 1 43.453 8 43.885 9 43.862 6 31.974 3 32.298 0 32.278 1 31.643 1 31.961 7 31.943 4 14 47.606 4 48.079 3 48.054 2 44.365 1 44.804 8 44.781 8 33.199 6 33.534 7 33.514 7 32.874 3 33.204 9 33.186 1 15 48.462 3 48.942 3 48.917 3 45.266 9 45.714 1 45.691 2 34.380 0 34.726 1 34.705 8 34.191 7 34.535 2 34.515 8 16 49.341 0 49.827 5 49.802 9 46.164 5 46.618 4 46.596 0 35.493 8 35.850 4 35.829 9 35.272 3 35.626 3 35.606 4 17 50.210 9 50.704 0 50.679 8 47.055 5 47.516 2 47.494 1 36.577 4 36.944 3 36.923 6 36.341 4 36.705 5 36.685 3 18 51.071 1 51.570 8 51.546 9 47.939 0 48.406 6 48.384 8 37.631 9 38.008 7 37.987 7 37.395 8 37.770 0 37.749 4 19 51.920 3 52.426 9 52.403 2 48.814 2 49.289 0 49.267 4 38.658 4 39.044 8 39.023 6 38.432 8 38.816 7 38.795 8 20 52.757 5 53.271 1 53.247 6 49.680 3 50.162 3 50.140 8 39.658 4 40.054 0 40.032 6 39.471 9 39.865 5 39.844 3 21 53.553 2 54.074 4 54.050 7 50.524 1 51.014 3 50.992 6 40.629 3 41.033 7 41.012 2 40.435 0 40.837 4 40.816 1 22 54.344 3 54.873 2 54.849 3 51.359 2 51.857 5 51.835 6 41.582 6 41.995 6 41.974 0 41.387 3 41.798 3 41.776 8 23 55.130 8 55.667 3 55.643 1 52.185 7 52.692 0 52.669 8 42.519 7 42.941 1 42.919 4 42.328 0 42.747 4 42.725 8 24 55.912 3 56.456 4 56.432 0 53.003 5 53.517 7 53.495 4 43.442 4 43.871 9 43.850 2 43.256 8 43.684 4 43.662 8 25 56.688 7 57.240 3 57.215 7 53.812 9 54.335 0 54.312 3 44.352 3 44.789 6 44.767 9 44.178 5 44.614 0 44.592 5 26 57.464 8 58.023 8 57.999 1 54.614 9 55.144 7 55.121 9 45.255 6 45.699 7 45.678 4 45.082 5 45.524 8 45.503 6 27 58.231 4 58.797 9 58.772 9 55.408 8 55.946 3 55.923 3 46.152 9 46.603 9 46.582 9 45.980 5 46.429 6 46.408 8 28 58.988 2 59.562 1 59.536 9 56.194 2 56.739 4 56.716 1 47.043 5 47.501 4 47.480 7 46.871 8 47.328 0 47.307 4 29 59.735 0 60.316 3 60.290 7 56.970 8 57.523 7 57.500 0 47.926 5 48.391 7 48.371 1 47.755 7 48.219 2 48.198 7 30 60.471 5 61.060 1 61.034 2 57.738 3 58.298 8 58.274 8 48.801 3 49.273 9 49.253 4 48.631 4 49.102 3 49.081 9 -
[1] AVANZI B, GERBER H U, SHIU E S W. Optimal dividends in the dual model[J]. Insurance Mathematics and Economics, 2006, 41(1):111-123. http://www.researchgate.net/publication/233810202_On_optimal_dividends_in_the_dual_model [2] NG A C Y. On a dual model with a dividend threshold[J]. Insurance:Mathematics and Economics, 2009, 44(2):315-324. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_f1f7696f1d3bedf167378dcfb48e5c7b [3] ZHAO Y X, WANG R M, YAO D J, et al. Optimal dividends and capital injections in the dual model with a random time horizon[J]. Journal of Optimization Theory and Applications, 2015, 167(1):272-295. doi: 10.1007/s10957-014-0653-0 [4] CHEUNG E C K, WONG J T Y. On the dual risk model with Parisian implementation delays in dividend payments[J]. European Journal of Operational Research, 2017, 257(1):159-173. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=358c67ff34fee2c8959b1da31fc40ad0 [5] PEREZ J L, YAMAZAKI K. Refraction-reflection strategies in the dual model[J]. ASTIN Bulletin:The Journal of the International Actuarial Association, 2017, 47(1):199-238. [6] MARCINIAK E, PALMOWSKI Z. On the optimal dividend problem in the dual model with surplus-dependent premiums[J]. Journal of Optimization Theory and Applications, 2018, 179(2):533-552. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9c4278853d848c4071b033af51039e14 [7] WU Y D, GUO J Y, TANG L. Optimal dividend strategies in discrete risk model with capital injections[J]. Applied Stochastic Models in Business and Industry, 2011, 27(5):557-566. doi: 10.1002/asmb.871 [8] DAI H S, LIU Z M, LUAN N N. Optimal dividend strategies in a dual model with capital injections[J]. Mathematical Methods of Operations Research, 2010, 72(1):129-143. doi: 10.1007/s00186-010-0312-7 [9] YAO D J, YANG H L, WANG R M. Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs[J]. European Journal of Operational Research, 2011, 211(3):568-576. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b19a823e50859ed1f64a221896fded8e [10] TAN J Y, MA Y H, ZHANG H J, et al. Optimal control strategies for dividend payments and capital injections in compound Markov binomial risk model with penalties for deficits[J]. Communications in Statistics-Theory and Methods, 2017, 46(10):5072-5092. doi: 10.1080/03610926.2015.1096385 [11] ZHAO Y X, WANG R M, YIN C C. Optimal dividends and capital injections for a spectrally positive Lévy process[J]. Journal of Industrial & Management Optimization, 2017, 13(1):1-21. [12] ZHAO Y X, CHEN P, YANG H L. Optimal periodic dividend and capital injection problem for spectrally positive Lévy processes[J]. Insurance:Mathematics and Econo-mics, 2017, 74:135-146. doi: 10.1016/j.insmatheco.2017.03.006 [13] YIN C C, YUEN K C. Optimal dividend problems for a jump-diffusion model with capital injections and proportional transaction costs[J]. Journal of Industrial and Management Optimization, 2015, 11(4):1247-1262. doi: 10.3934/jimo.2015.11.1247 [14] TAN J Y, LI C, LI Z Q, et al. Optimal dividend strategies in a delayed claim risk model with dividends discounted by stochastic interest rates[J]. Mathematical Methods of Operations Research, 2015, 82(1):61-83. doi: 10.1007/s00186-015-0504-2 [15] EISENBERG J. Optimal dividends under a stochastic interest rate[J]. Insurance Mathematics & Economics, 2015, 65:259-266. http://www.sciencedirect.com/science/article/pii/S0167668715001584 [16] TAN J Y, YANG X Q. Optimal dividend strategy in compound binomial model with bounded dividend rates[J]. Acta Mathematicae Applicatae Sinica:English Series, 2014, 30(4):859-870. doi: 10.1007/s10255-014-0428-2 [17] 杨中麟.全期望公式与复合分布[J].四川师院学报(自然科学版), 1984(4):87-91. http://www.cnki.com.cn/Article/CJFDTotal-SCSD198404010.htmYANG Z L. Total expectation formula and compound distribution[J]. Journal of Sichuan Normal University(Natural Science), 1984(4):87-91. http://www.cnki.com.cn/Article/CJFDTotal-SCSD198404010.htm [18] 邓丽, 谭激扬.复合二项对偶模型的最优分红问题[J].经济数学, 2014, 31(4):102-106. doi: 10.3969/j.issn.1007-1660.2014.04.018DENG L, TAN J Y. Optimal dividend strategy in the compound binomial dual model[J]. Journal of Quantitative Economics, 2014, 31(4):102-106. doi: 10.3969/j.issn.1007-1660.2014.04.018 [19] 彭丹, 侯振挺, 刘再明.随机利率下相依索赔的离散风险模型的分红问题[J].应用数学学报, 2011, 34(6):1056-1067. http://d.old.wanfangdata.com.cn/Periodical/yysxxb201106009PENG D, HOU Z T, LIU Z M. The dividend problems in the correlated discrete rate model under stochastic interest rates[J]. Acta Mathematicae Applicatae Sinica, 2011, 34(6):1056-1067. http://d.old.wanfangdata.com.cn/Periodical/yysxxb201106009 -