Degradation of Tetrabromobisphenol A with Surfactant-Enhanced PAC-Pd/Fe Nanoparticles
-
摘要: Pd/Fe纳米材料对卤代有机污染物有较强的降解能力,但四溴双酚A的强疏水性会阻碍污染物与Pd/Fe的有效接触.为促进四溴双酚A的降解,考察了不同表面活性剂对PAC-Pd/Fe纳米颗粒降解四溴双酚A的影响,结果表明:少量阴离子表面活性剂SDS对四溴双酚A的降解有明显的促进作用,反应速率可提高1.7~2.5倍;非离子表面活性剂TX-100对四溴双酚A降解的促进效果不明显,当其质量浓度超过临界胶束浓度时,甚至表现出抑制作用;阳离子表面活性剂CTAB对四溴双酚A的降解起抑制作用,且质量浓度越大,其抑制效果越明显;PAC-Pd/Fe纳米颗粒对四溴双酚A的降解是连续脱溴反应,四溴双酚A和其中间产物三溴双酚A、二溴双酚A和一溴双酚A的表观降解速率常数分别为0.466 2、0.435 6、0.338 0和0.271 1 min-1,与苯环上溴原子的数目成正比.
-
关键词:
- 表面活性剂 /
- PAC-Pd/Fe纳米颗粒 /
- 四溴双酚A /
- 降解 /
- 动力学
Abstract: Pd/Fe nanoparticles are considered effective agents for the degradation of halogenated organic compounds (HOCs). However, the high hydrophobicity of tetrabromobisphenol A (TBBPA) hinders its degradation owing to the inefficient contacts of TBBPA and Pd/Fe nanoparticles. To promote the degradation of TBBPA, the effects of different surfactants on TBBPA degradation with PAC-Pd/Fe nanoparticles were investigated. The results show that the anionic surfactant SDS had the best promoting effect on TBBPA degradation and the rate of reaction increased by 1.7-2.5 times. The nonionic surfactant TX-100 had little enhancement in TBBPA degradation. It even exerted an inhibitive effect as its concentration went above the critical micelle concentration. The cationic surfactant CTAB displayed the most inhibitive effect on TBBPA degradation, and the inhibition was stronger as the surfactant concentration increased. The degradation of TBBPA with PAC-Pd/Fe nanoparticles was a consecutive debromination reaction. The corresponding degradation rate constants of parent TBBPA and its intermediates tri-BBPA, di-BBPA and mono-BBPA were 0.466 2, 0.435 6, 0.338 0 and 0.271 1 min-1, respectively, which were proportional to the amount of bromide atoms on benzene rings.-
Key words:
- surfactant /
- PAC-Pd/Fe nanoparticles /
- tetrabromobisphenol A /
- degradation /
- kinetics
-
图 1 不同类型和质量浓度的表面活性剂对四溴双酚A降解的影响
注:CMC1、CMC2、CMC3分别为SDS、CTAB、TX-100的临界胶束浓度,表 2同.
Figure 1. The effects of various surfactants on the degradation of TBBPA with PAC-Pd/Fe nanoparticles
表 1 表面活性剂的性质
Table 1. The properties of the surfactants
表面活性剂 类型 分子式 相对分子量 CMC/(g·L-1) 化学结构 CTAB 阳离子 C19H42BrN 364.5 0.36 SDS 阴离子 C12H25O4SNa 288.6 2.36 TX-100 非离子 C34H62O11 647.0 0.13 注:表中CMC数据引自文献[11]. 表 2 四溴双酚A降解反应的一级动力方程拟合参数
Table 2. The fitting parameters of first-order kinetic equation for TBBPA degradation reaction
表面活性剂 质量浓度 Kobs/min-1 R2 无 - 0.188 2 0.995 1 SDS 0.5CMC1 0.321 2 0.991 3 1.0CMC1 0.466 2 0.986 4 3.0CMC1 0.281 1 0.998 5 5.0CMC1 0.251 6 0.998 4 CTAB 0.5CMC2 0.141 6 0.994 2 1.0CMC2 0.106 6 0.993 5 3.0CMC2 0.095 1 0.987 8 5.0CMC2 0.083 9 0.989 4 TX-100 0.5CMC3 0.216 6 0.993 6 1.0CMC3 0.246 4 0.997 9 3.0CMC3 0.154 1 0.996 0 5.0CMC3 0.132 5 0.993 9 -
[1] WIT C A D. An overview of brominated flame retardants in the environment[J]. Chemosphere, 2002, 46(5):583-624. http://cn.bing.com/academic/profile?id=f1fc512e334b24fc2a544ac4f93d3ac3&encoded=0&v=paper_preview&mkt=zh-cn [2] WANG J, LIU L, WANG J, et al. Distribution of metals and brominated flame retardants (BFRs) in sediments, soils and plants from an informal e-waste dismantling site, South China[J]. Environmental Science and Pollution Research, 2015, 22(2):1020-1033. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=84384431a1954349654eb8e8f0adb630 [3] SONG S, SONG M, ZENG L, et al. Occurrence and profiles of bisphenol analogues in municipal sewage sludge in China[J]. Environmental Pollution, 2014, 186:14-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=382243ee4703c246e5833a34d7266d74 [4] 张伟文, 刘胜利, 胡勇有, 等.石墨烯气凝胶对四溴双酚A的吸附研究[J].华南师范大学学报(自然科学版), 2018, 50(2):50-56. http://journal-n.scnu.edu.cn/article/id/4200ZHANG W W, LIU S L, HU Y Y, et al. Adsorption of tetrabromobisphenol A by grapheme aerogels[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(2):50-56. http://journal-n.scnu.edu.cn/article/id/4200 [5] LYCHE J L, ROSSELAND C, BERGE G, et al. Human health risk associated with brominated flame-retardants (BFRs)[J]. Environment International, 2015, 74:170-180. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=261583e7cfa34409eac8e23fd37bf157 [6] 陈玛丽, 刘青坡, 施华宏.四溴双酚-A的甲状腺激素干扰活性研究进展[J].环境与健康杂志, 2008, 25(10):937-939. http://d.old.wanfangdata.com.cn/Periodical/hjyjkzz200810039CHEN M L, LIU Q P, SHI H H. Thyroid hormone disrupting activities of tetrabromobisphenol A :a review[J]. Journal of Environment and Health, 2008, 25(10):937-939. http://d.old.wanfangdata.com.cn/Periodical/hjyjkzz200810039 [7] KUIPER R V, Van den BRANDHOF E J, LEONARDS P E G, et al. Toxicity of tetrabromobisphenol A (TBBPA) in zebrafish (Danio rerio) in a partial life-cycle test[J]. Archives of Toxicology, 2007, 81(1):1-9. http://cn.bing.com/academic/profile?id=7db4779f08bc1538071a1e168bbd30fd&encoded=0&v=paper_preview&mkt=zh-cn [8] LILIENTHAL H, VERWER C M, Van den VEN L T M, et al. Exposure totetrabromobisphenol A (TBBPA) in Wistar rats:neurobehavioral effects in offspring from a one-generation reproduction study[J]. Toxicology, 2008, 246(1):45-54. doi: 10.1016/j.tox.2008.01.007 [9] PULLEN S, BOECKER R G. The flame retardantstetrabromobisphenol A and tetrabromobisphenol A-bisallylether suppress the induction of interleukin-2 receptor alpha chain (CD25) in murine splenocytes[J]. Toxicology, 2003, 184(1):11-22. doi: 10.1016/S0300-483X(02)00442-0 [10] SHIH Y H, HSU C Y, SU Y F. Reduction of hexachlorobenzene by nanoscale zero-valent iron:kinetics, pH effect, and degradation mechanism[J]. Separation & Purification Technology, 2011, 76(3):268-274. http://cn.bing.com/academic/profile?id=d4aeecc648d2b6297ab1b3e0547aeee5&encoded=0&v=paper_preview&mkt=zh-cn [11] ZHU B W, LIM T T, FENG J. Influences of amphiphiles on dechlorination of a trichlorobenzene by nanoscale Pd/Fe:adsorption, reaction kinetics, and interfacial interactions[J]. Environmental Science & Technology, 2008, 42(12):4513-4519. http://cn.bing.com/academic/profile?id=2877059b64da3c3ffc691cec99b0be86&encoded=0&v=paper_preview&mkt=zh-cn [12] LONG Y Y, ZHANG C, DU Y, et al. Enhanced reductive dechlorination of polychlorinated biphenyl-contaminated soil by in-vessel anaerobic composting with zero-valent iron[J]. Environmental Science & Pollution Research, 2014, 21(6):4783-4792. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3b11b2aab474614ae234e59906d97b79 [13] SHIH Y H, TAI Y T. Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles[J]. Chemosphere, 2010, 78(10):1200-1206. http://cn.bing.com/academic/profile?id=d79ff34d41aacb5029aab4f26041bb8d&encoded=0&v=paper_preview&mkt=zh-cn [14] HUANG G F, WANG M M, HU Y Y, et al. Reductive degradation of 2, 2', 4, 4'-tretrabromodiphenyl ether with PAC-Pd/Fe nanoparticles:effects of Pd loading, initial pH and HA, and degradation pathway[J]. Chemical Engineering Journal, 2017, 334:1252-1259. http://cn.bing.com/academic/profile?id=387a84a059a814ddf390bd2e357d7d2b&encoded=0&v=paper_preview&mkt=zh-cn [15] LIN K, DING J, HUANG X. Debromination of tetrabromobisphenol A by nanoscale zerovalent iron:kinetics, influencing factors, and pathways[J]. Industrial & Engineering Chemistry Research, 2012, 51(25):8378-8385. http://cn.bing.com/academic/profile?id=789f3e1c95b0d42355149eb24fb79d1b&encoded=0&v=paper_preview&mkt=zh-cn [16] HUANG Q, LIU W, PENG P A, et al. Reductive debromination of tetrabromobisphenol A by Pd/Fe bimetallic catalysts[J]. Chemosphere, 2013, 92(10):1321-1327. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a2d5c4310bdd6412b745fd76d2c28c06 [17] WANG X, LAN L, ALVAREZ P J J, et al. Synthesis and characterization of green agents coated Pd/Fe bimetallic nanoparticles[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 50:297-305. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6526f1761bcaa4d5d3bd1ae262b635e7 [18] HUANG G F, WANG M M, HU Y Y, et al. Synthesis, characterization, and debromination reactivity of cellulose-stabilized Pd/Fe nanoparticles for 2, 2', 4, 4'-tretrabromodiphenyl ether[J]. Plos One, 2017, 12(3):1-17. http://cn.bing.com/academic/profile?id=43e0a34178ad335480e15e53f057a49a&encoded=0&v=paper_preview&mkt=zh-cn [19] CHO H H, PARK J W. Sorption and reduction of tetrachloroethylene with zero valent iron and amphiphilic molecules[J]. Chemosphere, 2006, 64(6):1047-1052. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=af74057c2a99a996be4e6eeca0f15622 [20] HE F, ZHAO D Y. Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers[J]. Environmental Science & Technology, 2007, 41(17):6216-6221. http://cn.bing.com/academic/profile?id=dd1aea07ce0b77903db725d11303dcb0&encoded=0&v=paper_preview&mkt=zh-cn [21] LIN Y H, TSENG H H, WEY M Y, et al. Characteristics, morphology, and stabilization mechanism of PAA250k-stabilized bimetal nanoparticles[J]. Colloids & Surfaces A:Physicochemical & Engineering Aspects, 2009, 349(1):137-144. http://cn.bing.com/academic/profile?id=25dbf2753d2fcff6f1e2da2051bf53f8&encoded=0&v=paper_preview&mkt=zh-cn [22] SAYLES G D, YOU G, WANG M, et al. DDT, DDD, and DDE dechlorination by zero-valent iron[J]. Environmental Science & Technology, 1997, 31(12):3448-3454. doi: 10.1021-es9701669/ [23] ZHENG Z Q, LU G N, WANG R, et al. Effects of surfactant on the degradation of 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) by nanoscale Ag/Fe particles:kinetics, mechanisms and intermediates[J]. Environmental Pollution, 2019, 245:780-788. http://cn.bing.com/academic/profile?id=a41ba0a803c227e8044f33106b76465d&encoded=0&v=paper_preview&mkt=zh-cn [24] ZHANG M, HE F, ZHAO D, et al. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles:effects of sorption, surfactants, and natural organic matter[J]. Water Research, 2011, 45(7):2014-2417. http://cn.bing.com/academic/profile?id=9913bf9412d27b340db8bf490f1b1cac&encoded=0&v=paper_preview&mkt=zh-cn [25] LI Y, LI X Q, HAN D H, et al. New insights into the role of Ni loading on the surface structure and the reactivity of nZVI toward tetrabromo-and tetrachlorobisphenol A[J]. Chemical Engineering Journal, 2017, 311:173-182. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0d3e09f89ec3d2834f8cbcc1335e28de [26] LIANG D W, YANG Y H, XU WW, et al. Nonionic surfactant greatly enhances the reductive debromination of polybrominated diphenyl ethers by nanoscale zero-valent iron:mechanism and kinetics[J]. Journal of Hazardous Materials, 2014, 278:592-596. http://cn.bing.com/academic/profile?id=d6543d2910aeccc622fbf5f3811d1f22&encoded=0&v=paper_preview&mkt=zh-cn -