留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子竞技影响认知功能的作用机制

刘承宜 唐璐 孙莎莎 白慕炜 龚妍春 蔺海旗

刘承宜, 唐璐, 孙莎莎, 白慕炜, 龚妍春, 蔺海旗. 电子竞技影响认知功能的作用机制[J]. 华南师范大学学报(自然科学版), 2020, 52(2): 1-8. doi: 10.6054/j.jscnun.2020019
引用本文: 刘承宜, 唐璐, 孙莎莎, 白慕炜, 龚妍春, 蔺海旗. 电子竞技影响认知功能的作用机制[J]. 华南师范大学学报(自然科学版), 2020, 52(2): 1-8. doi: 10.6054/j.jscnun.2020019
LIU Chengyi, TANG Lu, SUN Shasha, BAI Muwei, GONG Yanchun, LIN Haiqi. The Mechanism of Esport Influencing Cognitive Function[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(2): 1-8. doi: 10.6054/j.jscnun.2020019
Citation: LIU Chengyi, TANG Lu, SUN Shasha, BAI Muwei, GONG Yanchun, LIN Haiqi. The Mechanism of Esport Influencing Cognitive Function[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(2): 1-8. doi: 10.6054/j.jscnun.2020019

电子竞技影响认知功能的作用机制

doi: 10.6054/j.jscnun.2020019
基金项目: 

国家重点研发计划项目 2017YFB0403800

详细信息
    通讯作者:

    刘承宜, 教授, Email:liutcy@scnu.edu.cn

  • 中图分类号: G623.8

The Mechanism of Esport Influencing Cognitive Function

  • 摘要: 电子竞技作为新兴体育运动项目之一,受到了越来越多的关注.电子竞技对健康的影响是研究者感兴趣的一个主题.近些年来,习惯性电子竞技与认知能力之间的关系成为研究热点.通过对该领域研究进展的综述发现,习惯性电子竞技可以增强认知功能,主要通过注意功能、视觉空间功能和认知控制功能的提高、认知负荷的增大、技能习得的加快以及奖赏加工的增强等方面来实现.研究结果证实了脑的可塑性,同时表明习惯性电子竞技可以帮助人们更加有效地学习与工作.
  • 图  1  习惯性玩家与非习惯性玩家在注意功能的比较[4]

    Figure  1.  The comparison of attention functions between habitual player and non-habitual player[4]

    图  2  电子竞技习惯回路的形成

    Figure  2.  The formation of Esport habit loop

    图  3  电子竞技与小脑活动的正则通路关系的可能机制[80]

    Figure  3.  The possible mechanism of the relationship between Esports and the cerebellum's NSP

  • [1] 杨越.新时代电子竞技和电子竞技产业研究[J].体育科学, 2018, 38(4):8-21. doi: 10.3969/j.issn.1004-3624.2018.04.002

    YANG Y. Research on Esports and Esports industry in the new era[J]. China Sport Science, 2018, 38(4):8-21. doi: 10.3969/j.issn.1004-3624.2018.04.002
    [2] 王东辉, 吴菲菲, 王圣明, 等.人类脑科学研究计划的进展[J].中国医学创新, 2019, 16(7):168-172. http://d.old.wanfangdata.com.cn/Periodical/zgyxcx201907044

    WU D H, WU F F, WANG S M, et al. Progress of human brain science research program[J]. Medical Innovation of China, 2019, 16(7):168-172. http://d.old.wanfangdata.com.cn/Periodical/zgyxcx201907044
    [3] ANGUERA J A, BOCCANFUSO J, RINTOUL J L, et al. Video game training enhances cognitive control in older adults[J]. Nature, 2013, 501:97-101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=87e6cb2e8107399f21179ede69c39514
    [4] BAVELIER D, DAVIDSON R J. Games to do you good[J]. Nature, 2013, 494:425-426. doi: 10.1038/494425a
    [5] MAARTEN B J, JETSE G, ERIK H, et al. The effects of video games on laparoscopic simulator skills[J]. American Journal of Surgery, 2014, 208(1):151-156. doi: 10.1016/j.amjsurg.2013.11.006
    [6] LI L, CHEN R, CHEN J. Playing action video games improves visuomotor control[J]. Psychological Science, 2016, 27(8):1092-1098. doi: 10.1177/0956797616650300
    [7] GAMBACORTA C, NAHUM M, VEDAMURTHY I, et al. An action video game for the treatment of amblyopia in children:a feasibility study[J]. Vision Research, 2018, 148:1-14. doi: 10.1016/j.visres.2018.04.005
    [8] VOSSEL S, GENG J J, FINK G R. Dorsal and ventral attention systems:distinct neural circuits but collaborative roles[J]. Neuroscientist, 2014, 20(2):150-159. doi: 10.1177/1073858413494269
    [9] BAVELIER D, ACHTMAN R, MANI M, et al. Neural bases of selective attention in action video game players[J]. Vision Research, 2012, 61:132-143. doi: 10.1016/j.visres.2011.08.007
    [10] BAVELIER D, SHAWN G C, POUGET A, et al. Brain plasticity through the life span:learning to learn and action video games[J]. Annual Review of Neuroscience, 2012, 35:391-416. doi: 10.1146/annurev-neuro-060909-152832
    [11] PRAKASH R S, LEON A A D, MOURANY L, et al. Examining neural correlates of skill acquisition in a complex videogame training program[J]. Frontiers in Human Neuroscience, 2012, 6:115/1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003593484
    [12] STRENZIOK M, PARASURAMAN R, CLARKE E, et al. Neurocognitive enhancement in older adults:comparison of three cognitive training tasks to test a hypothesis of training transfer in brain connectivity[J]. NeuroImage, 2014, 85:1027-1039. doi: 10.1016/j.neuroimage.2013.07.069
    [13] GONG D, HE H, MA W, et al. Functional integration between salience and central executive networks:a role for action video game experience[J]. Neural Plasticity, 2016, 2016:9803165/1-9. http://cn.bing.com/academic/profile?id=84e2ab9f218ce27a005123f7ae4ee7e5&encoded=0&v=paper_preview&mkt=zh-cn
    [14] GREEN C S, BAVELIER D. Action video game modifies visual selective attention[J]. Nature, 2003, 423:534-537. doi: 10.1038/nature01647
    [15] KAUFMAN L D, PRATT J, LEVINE B, et al. Executive deficits detected in mild Alzheimer's disease using the antisaccade task[J]. Brain and Behavior, 2012, 2(1):15-21. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3343295
    [16] PALAUS M, MARRON E M, VIEJO-SOBERA R, et al. Neural basis of video gaming:a Systematic review[J]. Frontiers in Human Neuroscience, 2017, 11:248/1-40. http://cn.bing.com/academic/profile?id=4016afbb86ad167ee74d2051ac029f5a&encoded=0&v=paper_preview&mkt=zh-cn
    [17] KRAVITZ D J, SALEEM K S, BAKER C I, et al. A new neural framework for visuospatial processing[J]. Nature Reviews Neuroscience, 2011, 12(4):217-230. doi: 10.1038/nrn3008
    [18] LEE A, YEUNG L, BARENSE M. The hippocampus and visual perception[J]. Frontiers in Human Neuroscience, 2012, 6:91/1-17. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3328126
    [19] KVHN S, GALLINAT J. Amount of lifetime video gaming is positively associated with entorhinal, hippocampal and occipital volume[J]. Molecular Psychiatry, 2014, 19(7):842-847. doi: 10.1038/mp.2013.100
    [20] SCHMIDT-HIEBER C, HÄUSSER M. Cellular mechanisms of spatial navigation in the medial entorhinal cortex[J]. Nature Neuroscience, 2013, 16(3):325-331. doi: 10.1038/nn.3340
    [21] MILLER J F, FRIED I, SUTHANA N, et al. Repeating spatial activations in human entorhinal cortex[J]. Current Biology, 2015, 25(8):1080-1085. doi: 10.1016/j.cub.2015.02.045
    [22] KVHN S, GLEICH T, LORENZ R C, et al. Playing super mario induces structural brain plasticity:gray matter changes resulting from training with a commercial video game[J]. Molecular Psychiatry, 2014, 19(2):265-271. doi: 10.1038/mp.2013.120
    [23] VOGAN V M, MORGAN B R, POWELL T L, et al. The neurodevelopmental differences of increasing verbal working memory demand in children and adults[J]. Developmental Cognitive Neuroscience, 2016, 17:19-27. doi: 10.1016/j.dcn.2015.10.008
    [24] BARROUILLET P, BERNARDIN S, PORTRAT S, et al. Time and cognitive load in working memory[J]. Journal of experimental psychology:learning, memory and cognition, 2007, 33(3):570-585. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3078384
    [25] BROOKINGS J, WILSON G, SWAIN C. Psychophysiological responses to changes in workload during simulated air traffic control[J]. Biological Psychology, 1996, 42(3):361-377. doi: 10.1016/0301-0511(95)05167-8
    [26] SHEIKHOLESLAMI C, YUAN H, HE E, et al. A high resolution EEG study of dynamic brain activity during video game play[C] //Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2007: 2489-2491.
    [27] IZZETOGLU K, BUNCE S, ONARAL B, et al. Functional optical brain imaging using near-infrared during cognitive tasks[J]. International Journal of Human-Computer Interaction, 2004, 17(2):211-227. doi: 10.1207/s15327590ijhc1702_6
    [28] MCMAHAN T, PARBERRY I, PARSONS T D. Modality specific assessment of video game player's experience using the Emotiv[J]. Entertainment Computing, 2015, 7:1-6. doi: 10.1016/j.entcom.2015.03.001
    [29] IACCARINO H F, SINGER A C, MARTORELL A J, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia[J]. Nature, 2016, 540:230-235. doi: 10.1038/nature20587
    [30] MANDREKAR S, JIANG Q, LEE C Y D, et al. Microglia mediate the clearance of soluble β through fluid phase macropinocytosis[J]. Journal of Neuroscience, 2009, 29(13):4252-4262. doi: 10.1523/JNEUROSCI.5572-08.2009
    [31] OBESO I, ROBLES N, MARRÓN E M, et al. Dissociating the role of the pre-SMA in response inhibition and swit-ching:a combined online and offline TMS approach[J]. Frontiers in Human Neuroscience, 2013, 7:150/1-9. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3629293
    [32] NACHEV P, KENNARD C, HUSAIN M. Functional role of the supplementary and pre-supplementary motor areas[J]. Nature Reviews Neuroscience, 2008, 9(11):856-869. doi: 10.1038/nrn2478
    [33] ALVAREZ J A, EMORY E. Executive function and the frontal lobes:a meta-analytic review[J]. Neuropsycho-logy Review, 2006, 16(1):17-42. doi: 10.1007-s11065-006-9002-x/
    [34] KVHN S, LORENZ R, BANASCHEWSKI T, et al. Positive association of video game playing with left frontal cortical thickness in adolescents[J]. PLoS One, 2014, 9(3):e91506/1-6. http://cn.bing.com/academic/profile?id=944febb9195e344c1450fb6fffcc4131&encoded=0&v=paper_preview&mkt=zh-cn
    [35] GLEICH T, LORENZ R C, GALLINAT J, et al. Functional changes in the reward circuit in response to gaming-related cues after training with a commercial video game[J]. Neuroimage, 2017, 152:467-475. doi: 10.1016/j.neuroimage.2017.03.032
    [36] WEST G, ZENDEL B, KONISHI K, et al. Playing Super Mario 64 increases hippocampal grey matter in older adults[J]. PLoS One, 2017, 12(12):e0187779/1-7. http://cn.bing.com/academic/profile?id=fcf79beaf8d8a4efa8af73d6cb67575b&encoded=0&v=paper_preview&mkt=zh-cn
    [37] SMITH E E, JONIDES J. Storage and executive processes in the frontal lobes[J]. Science, 1999, 283:1657-1661. http://cn.bing.com/academic/profile?id=ec42d80cd21f220b3578d4c1eb6711c1&encoded=0&v=paper_preview&mkt=zh-cn
    [38] KUMAR S, ZOMORRODI R, GHAZALA Z, et al. Extent of dorsolateral prefrontal cortex plasticity and its association with working memory in patients with Alzheimer disease[J]. JAMA Psychiatry, 2017, 74(12):1266-1274. doi: 10.1001/jamapsychiatry.2017.3292
    [39] BADDELEY A D, BRESSI S, SALA S D, et al. The decline of working memory in Alzheimer's disease[J]. Brain, 1991, 114(6):2521-2542. doi: 10.1093/brain/114.6.2521
    [40] HUNTLEY J D, HOWARD R J. Working memory in early Alzheimer's disease:a neuropsychological review[J]. International Journal of Geriatric Psychiatry, 2010, 25(2):121-132. doi: 10.1002/gps.2314
    [41] VOYTEK B, DAVIS M, YAGO E, et al. Dynamic neuroplasticity after human prefrontal Cortex damage[J]. Neuron, 2010, 68(3):401-408. doi: 10.1016/j.neuron.2010.09.018
    [42] SUSANNE J V V, SAWYER E K, CLOVER L, et al. Prefrontal cortex cytoarchitecture in normal aging and Alzheimer's disease:a relationship with IQ[J]. Brain Structure and Function, 2012, 217(4):797-808. doi: 10.1007/s00429-012-0381-x
    [43] BISWAL B B, ELDRETH D A, MOTES M A, et al. Task-dependent individual differences in prefrontal connectivity[J]. Cerebral Cortex, 2010, 20(9):2188-2197. doi: 10.1093/cercor/bhp284
    [44] MATSUDA G, HIRAKI K. Prefrontal Cortex deactivation during video game play[J]. Gaming, Simulations, and Society, 2005, 153:101-109. http://cn.bing.com/academic/profile?id=22cee32beead6cf0e404d3062c0433ae&encoded=0&v=paper_preview&mkt=zh-cn
    [45] NAGAMITSU S, NAGANO M, YAMASHITA Y, et al. Prefrontal cerebral blood volume patterns while playing video games:a near-infrared spectroscopy study[J]. Brain and Development, 2006, 28(5):315-321. doi: 10.1016/j.braindev.2005.11.008
    [46] QUIROGA R Q, REDDY L, KREIMAN G, et al. Invariant visual representation by single neurons in the human brain[J]. Nature, 2005, 435:1102-1107. doi: 10.1038/nature03687
    [47] GOBEL E W, PARRISH T B, REBER P J. Neural correlates of skill acquisition:decreased cortical activity during a serial interception sequence learning task[J]. NeuroImage, 2011, 58(4):1150-1157. doi: 10.1016/j.neuroimage.2011.06.090
    [48] ERICKSON K I, BOOT W R, BASAK C, et al. Striatal volume predicts level of video game skill acquisition[J]. Cerebral Cortex, 2010, 20(11):2522-2530. doi: 10.1093/cercor/bhp293
    [49] VO L, WALTHER D, KRAMER A, et al. Predicting individuals' learning success from patterns of pre-learning MRI activity[J]. PLoS One, 2011, 6(1):e16093/1-9. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3021541
    [50] KOEPP M J, GUNN R N, LAWRENCE A D, et al. Evidence for striatal dopamine release during a video game[J]. Nature, 1998, 393:266-268. doi: 10.1038/30498
    [51] ANDERSON J R, BOTHELL D, FINCHAM J M, et al. The sequential structure of brain activation predicts skill[J]. Neuropsychologia, 2016, 81:94-106. doi: 10.1016/j.neuropsychologia.2015.12.014
    [52] HABER S N. Neuroanatomy of reward:a view from the ventral striatum:Neurobiology of sensation and reward[M]. Bethesda MD:NCBI Bookshelf, 2011:1-27.
    [53] VOLKOW N D, WANG G J, FOWLER J S, et al. Addiction:decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain's control circuit[J]. BioEssays, 2010, 32(9):748-755. doi: 10.1002/bies.201000042
    [54] HEINZ A, BECK A, GRVSSER S M, et al. Identifying the neural circuitry of alcohol craving and relapse vulnerabi-lity[J]. Addiction Biology, 2009, 14(1):108-118. doi: 10.1111/j.1369-1600.2008.00136.x
    [55] FENG Q, CHEN X, SUN J, et al. Voxel-level comparison of arterial spin-labeled perfusion magnetic resonance imaging in adolescents with internet gaming addiction[J]. Behavioral and Brain Functions, 2013, 9:33/1-11. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3751515
    [56] KO C, LIU G, YEN J, et al. Brain correlates of craving for online gaming under cue exposure in subjects with Internet gaming addiction and in remitted subjects[J]. Addiction Biology, 2013, 18(3):559-569. doi: 10.1111/j.1369-1600.2011.00405.x
    [57] JIN C, ZHANG T, CAI C, et al. Abnormal prefrontal cortex resting state functional connectivity and severity of internet gaming disorder[J]. Brain Imaging and Behavior, 2016, 10(3):719-729. doi: 10.1007/s11682-015-9439-8
    [58] WITTMANN B C, SCHOTT B H, GUDERIAN S, et al. Reward-related fMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation[J]. Neuron, 2005, 45(3):459-467. doi: 10.1016/j.neuron.2005.01.010
    [59] ADCOCK R A, THANGAVEL A, WHITFIELD-GABRIELI S, et al. Reward-motivated learning:mesolimbic activation precedes memory formation[J]. Neuron, 2006, 50(3):507-517. doi: 10.1016/j.neuron.2006.03.036
    [60] FENG J, SPENCE I, PRATT J. Playing an action video game reduces gender differences in spatial cognition[J]. Psychological Science, 2007, 18(10):850-855. doi: 10.1111/j.1467-9280.2007.01990.x
    [61] DYE M, BAVELIER D. Differential development of visual attention skills in school-age children[J]. Vision Research, 2010, 50(4):452-459. doi: 10.1016/j.visres.2009.10.010
    [62] WANG P, LIU H, ZHU X, et al. Action video game training for healthy adults:a meta-analytic study[J]. Frontiers in Psychology, 2016, 7:907/1-17. http://cn.bing.com/academic/profile?id=1d37c1ba3ba0ab487f21e1787ff612e2&encoded=0&v=paper_preview&mkt=zh-cn
    [63] POWERS K L, BROOKS P J, ALDRICH N J, et al. Effects of video-game play on information processing:a meta-analytic investigation[J]. Psychonomic Bulletin and Review, 2013, 20(6):1055-1079. doi: 10.3758/s13423-013-0418-z
    [64] 田麦久, 麻雪田, 黄新河, 等.项群训练理论及其应用[J].体育科学, 1990(6):29-35. http://www.cnki.com.cn/Article/CJFD1990-TYKX199006008.htm

    TIAN M J, MA X T, HUANG XH, et al. The training theory of sports group and its application[J]. China Sport Science, 1990(6):29-35. http://www.cnki.com.cn/Article/CJFD1990-TYKX199006008.htm
    [65] JASSAL D S, MOFFAT D, KRAHN J, et al. Cardiac injury markers in non-elite marathon runners[J]. International Journal of Sports Medicine, 2009, 30(2):75-79. doi: 10.1055/s-0028-1104572
    [66] FREDERICSON M, MISRA A K. Epidemiology and aetiology of marathon running injuries[J]. Sports Medicine, 2007, 37(4/5):437-439. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b2fdc13ea2413de730f1e83de1dad35b
    [67] HAMLIN M J, LIZAMORE C A, HOPKINS W G. The effect of natural or simulated altitude training on high-intensity intermittent running performance in team-sport athletes:a meta-analysis[J]. Sports Medicine, 2018, 42(2):431-446. http://cn.bing.com/academic/profile?id=d7745aa0aa3be6d30c2f7cab90c6dfba&encoded=0&v=paper_preview&mkt=zh-cn
    [68] STOCKDALE L, COYNE S M. Video game addiction in emerging adulthood:cross-sectional evidence of pathology in video game addicts as compared to matched healthy controls[J]. Journal of Affective Disorders, 2018, 255:265-272. http://cn.bing.com/academic/profile?id=baf4b4c63b16b84b33298f5c1427ab10&encoded=0&v=paper_preview&mkt=zh-cn
    [69] EVREN B, EVREN C, DALBUDAK E, et al. The impact of depression, anxiety, neuroticism, and severity of Internet addiction symptoms on the relationship between probable ADHD and severity of insomnia among young adults[J]. Psychiatry Research, 2019, 271:726-731. doi: 10.1016/j.psychres.2018.12.010
    [70] OWEN A M, HAMPSHIRE A, GRAHN J A, et al. Putting brain training to the test[J]. Nature, 2010, 465:775-778. doi: 10.1038/nature09042
    [71] RAICHLE M E, MACLEOD A M, SNYDER A Z, et al. A default mode of brain function[J]. Proceedings of the national academy of science of the United States of America, 2001, 98(2):676-682. doi: 10.1073/pnas.98.2.676
    [72] DENNIS E L, THOMPSON P M. Functional brain connectivity using fMRI in aging and Alzheimer's disease[J]. Neuropsychology Review, 2014, 24(1):49-62. doi: 10.1007/s11065-014-9249-6
    [73] HUSKEY R, CRAIGHEAD B, MILLER M B, et al. Does intrinsic reward motivate cognitive control? a naturalistic-fMRI study based on the synchronization theory of flow[J]. Cognitive, Affective & Behavioral Neuroscience, 2018, 18(5):902-924. http://cn.bing.com/academic/profile?id=ab92d7a8ea1df8a244eaea3f07a47b2d&encoded=0&v=paper_preview&mkt=zh-cn
    [74] ULRICH M, KELLER J, GRÖN G. Dorsal raphe nucleus down-regulates medial prefrontal Cortex during experience of flow[J]. Frontiers in Behavioral Neuroscience, 2016, 10:169/1-9. http://cn.bing.com/academic/profile?id=0c5297b103968b0f45992a6a1441add1&encoded=0&v=paper_preview&mkt=zh-cn
    [75] LIU T C Y, TANG X M, DUAN R, et al. The mitochondrial Na+/Ca2+ exchanger is necessary but not sufficient for Ca2+ homeostasis and viability[J]. Advances in Experimental Medicine and Biology, 2018, 1072:281-285. doi: 10.1007/978-3-319-91287-5_45
    [76] LILJEHOLM M, DUNNE S, O'DOHERTY J. Differentiating neural systems mediating the acquisition vs. expression of goal-directed and habitual behavioral control[J]. European Journal of Neuroscience, 2015, 41(10):1358-1371. doi: 10.1111/ejn.12897
    [77] HERCULANO-HOUZEL S. Coordinated scaling of cortical and cerebellar numbers of neurons[J]. Frontiers in Neuroanatomy, 2010, 4(12):1-8. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2839851
    [78] VANDERVERT L. The prominent role of the cerebellum in the learning, origin and advancement of culture[J]. Cerebellum & Ataxias, 2016, 3(1):1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=WK_MED201912251464
    [79] WAGNER M J, KIM T H, SAVALL J, et al. Cerebellar granule cells encode the expectation of reward[J]. Nature, 2017, 544:96-100. doi: 10.1038/nature21726
    [80] LIU T, WU D, ZHU L, et al. Microenvironment dependent photobiomodulation on function-specific signal transduction pathways[J]. International Journal of Photoenergy, 2014, 2014:904304/1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eba8053edca39d839e50453c6e212071
    [81] LIU C, LIU G, HU S, et al. Quantitative biology of exercise-induced signal transduction pathways[J]. Advances in Experimental Medicine & Biology, 2017, 977:419-424. doi: 10.1007/978-3-319-55231-6_54
  • 加载中
图(3)
计量
  • 文章访问数:  2683
  • HTML全文浏览量:  1454
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-30
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回