留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带时滞项的Boussinesq-Beam方程的拉回吸引子

徐瑰瑰 王利波 林国广

徐瑰瑰, 王利波, 林国广. 带时滞项的Boussinesq-Beam方程的拉回吸引子[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 104-111. doi: 10.6054/j.jscnun.2020016
引用本文: 徐瑰瑰, 王利波, 林国广. 带时滞项的Boussinesq-Beam方程的拉回吸引子[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 104-111. doi: 10.6054/j.jscnun.2020016
XU Guigui, WANG Libo, LIN Guoguang. Pullback Attractors for the Boussinesq-Beam Equation with Time Delay[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(1): 104-111. doi: 10.6054/j.jscnun.2020016
Citation: XU Guigui, WANG Libo, LIN Guoguang. Pullback Attractors for the Boussinesq-Beam Equation with Time Delay[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(1): 104-111. doi: 10.6054/j.jscnun.2020016

带时滞项的Boussinesq-Beam方程的拉回吸引子

doi: 10.6054/j.jscnun.2020016
基金项目: 

国家自然科学基金项目 11561076

贵州省教育厅青年科技人才成长项目 黔教合KY字[2016]306

详细信息
    通讯作者:

    徐瑰瑰,讲师,Email:xuguigui586@ 163.com

  • 中图分类号: O175.29

Pullback Attractors for the Boussinesq-Beam Equation with Time Delay

  • 摘要: 利用压缩函数的方法和相关理论,研究带时滞项的Boussinesq-Beam方程的拉回吸引子的存在性:首先通过作内积和不等式估计得到拉回吸收集的存在性,然后借助构造具体的能量泛函并结合收缩函数法的思想验证带时滞项的Boussinesq-Beam方程的解所生成的过程$ \{U(t, \tau)\}_{t \geqslant \tau}$在$ C_{D(A), V}$中是渐近紧的,最后证明过程$ \{U(t, \tau)\}_{t \geqslant \tau}$在$ C_{D(A), V}$中存在拉回吸引子.
  • [1] POLAT N, ERTAS A. Existence and blow up of solution of Cauchy problem for generalized damped multidimensional Boussinesq[J]. Journal of Mathematical Analysis and Applications, 2008, 349(1):10-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b90f553a0de8a553c045335b8b58b02f
    [2] WANG H W, WANG S B. Global existence and asymptotic behavior of solution for the Rosenau equation with hydrodynamical damped term[J]. Journal of Mathematical Analysis and Applicationsl, 2013, 401(2):763-773. doi: 10.1016/j.jmaa.2012.12.069
    [3] XU R Z, LIU Y C, YU T. Global existence of solution for Cauchy problem of multidimensional generalized double dis-persion equations[J]. Nonlinear Ayalysis:Theory, Methods & Applications, 2009, 71(10):4977-4983.
    [4] 任永华, 张建文.非自治强阻尼梁方程的渐近行为[J].太原理工大学学报, 2013, 44(1):116-118. doi: 10.3969/j.issn.1007-9432.2013.01.028

    REN Y H, ZHANG J W. Asymptotic behavior for non-autonomous strongly damped Beam equation[J]. Journal of Taiyuan University of Technology, 2013, 44(1):116-118. doi: 10.3969/j.issn.1007-9432.2013.01.028
    [5] YU J L, SHANG Y D, DI H F. On decay and blow-up of solutions for a nonlinear beam equation with double dam- ping terms[J/OL]. Boundary Value Problem, (2018-09-24)[2019-03-13]. https: //doi.org/10.1186/s13661-018-1067-y.
    [6] CHARAO R C, IKEHTA R. Remarks on the decay rate of the energy for damped modified Boussinesq-Beam equations on the 1-D half line[J]. Funkcialaj Ekvacioj-serio Internacia, 2017, 60(2):239-257. doi: 10.1619/fesi.60.239
    [7] ZHENG P S, LENG L H. Limiting behavior of blow-up solutions for the cubic nonlinear beam equation[J/OL]. Boundary Value Problems, (2018-11-06)[2019-03-13]. https: //doi.org/10.1186/s13661-018-1089-5.
    [8] CARVALHO A N, LANGA J A, ROBINSON J C. Attrac-tors for infinite-demensional non-autonomous dynamical systems[M]. New York: Springer, 2013.
    [9] 林俊宇, 龚伟华, 徐晓杰.液晶流方程在弱Lp空间中的解的存在性[J].华南师范大学学报(自然科学版), 2019, 51(1):97-103. http://journal-n.scnu.edu.cn/article/id/4511

    LIN J Y, GONG W H, XU X J. On the existence of solutions to the nematic liquid crystal flow in weak-LP spaces[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(1):97-103. http://journal-n.scnu.edu.cn/article/id/4511
    [10] WANG Y H. Pullback attractors for nonautonomous wave equations with critical exponent[J]. Nonlinear Analysis: Theory, Methods & Applications, 2008, 68(2):365-376. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ada81894507b11f539921b040ced780
    [11] TEMAM R. Infinite dimensional dynamical systems in mechanics and physics[M]. New York: Springer, 1997.
    [12] 郭金勇.一类四阶非线性抛物方程弱解的存在性[J].华南师范大学学报(自然科学版), 2013, 45(5):23-26. http://journal-n.scnu.edu.cn/article/id/3201

    GUO J Y. The existence of weak solutions for a class of fourth order nonlinear parabolic equation[J]. Journal of South China Normal University(Natural Science Edition), 2013, 45(5):23-26. http://journal-n.scnu.edu.cn/article/id/3201
    [13] GARCA-LUENGO J, MARN-RIO P, REAL J. Pullback attractors in V for non-autonomous 2D-Navier-Stokes equations and their tempered behaviour[J]. Journal of Differential Equations, 2012, 252(8):4333-4356. doi: 10.1016/j.jde.2012.01.010
    [14] ZHU K X, SUN C Y. Pullback attractors for nonclassical diffusion equations with delays[J]. Journal of Mathematical Physics, 2015, 56(9):092703/1-20. doi: 10.1063/1.4931480
    [15] LU Z, YANG M H, ZHANG C J. Dynamics for the damped Boussinesq equation with delay[J]. Stochastics and Dynamics, 2016, 16(6):1650021/1-11. doi: 10.1142/S0219493716500210
    [16] WANG Y H. Pullback attractors for nonautonomous wave equations with critical exponent[J]. Nonlinear Analysis:Theory, Methods & Applications, 2008, 68(2):365-376. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ada81894507b11f539921b040ced780
    [17] 徐茜, 李晓军.带非线性阻尼非自治波方程拉回吸引子的存在性[J].黑龙江大学自然科学学报, 2014, 31(3):306-314. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hljdxzrkxxb201403006

    XU Q, LI X J. The existence of pullback attractors for non-autonomous wave quations with nonlinear damping[J]. Journal of Natural Science of Heilongjiang University, 2014, 31(3):306-314. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hljdxzrkxxb201403006
  • 加载中
计量
  • 文章访问数:  1620
  • HTML全文浏览量:  804
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-28
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回