留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

本原不可幂广义符号矩阵的若干结构指数的界

黄宇飞

黄宇飞. 本原不可幂广义符号矩阵的若干结构指数的界[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 91-99. doi: 10.6054/j.jscnun.2020014
引用本文: 黄宇飞. 本原不可幂广义符号矩阵的若干结构指数的界[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 91-99. doi: 10.6054/j.jscnun.2020014
HUANG Yufei. Bounds on the Structural Indices of Primitive Non-powerful Generalized Sign Pattern Matrices[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(1): 91-99. doi: 10.6054/j.jscnun.2020014
Citation: HUANG Yufei. Bounds on the Structural Indices of Primitive Non-powerful Generalized Sign Pattern Matrices[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(1): 91-99. doi: 10.6054/j.jscnun.2020014

本原不可幂广义符号矩阵的若干结构指数的界

doi: 10.6054/j.jscnun.2020014
基金项目: 

国家自然科学基金项目 11501139

广航院国家自然科学基金校级重点培育项目 18X0429

详细信息
    通讯作者:

    黄宇飞, 副教授, Email:fayger@qq.com

  • 中图分类号: O151.21

Bounds on the Structural Indices of Primitive Non-powerful Generalized Sign Pattern Matrices

  • 摘要: 鉴于“环”在结构指数问题研究中的特殊功效, 定义了2类特殊的广义带号有向图:含交圈结构/含违规交圈结构的本原不可幂广义带号有向图.利用有向图的模拟、模糊可达集的分析以及Frobenius数的若干性质, 研究了kτ-基指数、kτ-同位基指数、第k重下τ-基指数、第k重上τ-基指数及ω-不可分基指数等结构指数分别在含交圈结构/含违规交圈结构的本原不可幂广义带号有向图类限制下的上界估值问题.
  • [1] 柳柏濂.组合矩阵论[M].北京:科学出版社, 2005.
    [2] LI Z S, HALL F, ESCHENBACH C. On the period and base of a sign pattern matrix[J]. Linear Algebra and its Applications, 1994, 212/213:101-120. doi: 10.1016/0024-3795(94)90398-0
    [3] LIU B L, YOU L H. Bounds on the base of primitive nearly reducible sign pattern matrices[J]. Linear Algebra and its Applications, 2006, 418:863-881. doi: 10.1016/j.laa.2006.03.024
    [4] YOU L H, SHAO J Y, SHAN H Y. Bounds on the bases of irreducible generalized sign pattern matrices[J]. Linear Algebra and its Applications, 2007, 427:285-300. doi: 10.1016/j.laa.2007.07.019
    [5] HUANG Y F, LIU B L, CHEN S Y. The generalized τ-bases of primitive non-powerful signed digraphs with d loops[J]. Graphs and Combinatorics, 2012, 28:227-242. doi: 10.1007/s00373-011-1036-z
    [6] 黄宇飞, 柳柏濂.本原不可幂符号矩阵的完全不可分基指数[J].华南师范大学学报(自然科学版), 2016, 48(4):88-94. doi: 10.6054/j.jscnun.2016.05.038

    HUANG Y F, LIU B L. Fully indecomposable bases of primitive non-powerful sign pattern matrices[J]. Journal of South China Normal University(Natural Science Edition), 2016, 48(4):88-94. doi: 10.6054/j.jscnun.2016.05.038
    [7] 柳柏濂, 黄宇飞.组合矩阵的结构指数[M].北京:科学出版社, 2015.
    [8] 黄宇飞, 柳柏濂.组合矩阵的结构指数——组合矩阵指数的系统化[J].数学进展, 2016, 45(2):161-175. http://d.old.wanfangdata.com.cn/Conference/8986853

    HUANG Y F, LIU B L. Structural indices of combinatorial matrix——the systematization of combinatorial matrix indices[J]. Advances in Mathematics, 2016, 45(2):161-175. http://d.old.wanfangdata.com.cn/Conference/8986853
    [9] LI Q, LIU B L. Bounds on the kth multi-g base index of nearly reducible sign pattern matrices[J]. Discrete Mathe-matics, 2008, 308:4846-4860. doi: 10.1016/j.disc.2007.09.004
    [10] WANG L Q, MIAO Z K, YAN C. Local bases of primitive non-powerful signed digraphs[J]. Discrete Mathematics, 2009, 309:748-754. doi: 10.1016/j.disc.2008.01.012
    [11] GAO Y B, SHAO Y L, SHEN J. Bounds on the local bases of primitive nonpowerful nearly reducible sign patterns[J]. Linear and Multilinear Algebra, 2009, 57(2):205-215. doi: 10.1080/03081080701763433
    [12] LIANG C H, LIU B L, HUANG Y F. The kth lower bases of primitive non-powerful signed digraphs[J]. Linear Algebra and its Applications, 2010, 432:1680-1690. doi: 10.1016/j.laa.2009.11.023
    [13] SHAO Y L, SHEN J, GAO Y B. The kth upper bases of primitive non-powerful signed digraphs[J]. Discrete Mathematics, 2009, 309:2682-2686. doi: 10.1016/j.disc.2008.06.039
    [14] BONDY J A, MURTY U S R. Graph theory with applications[M]. London:The Macmillan Press Ltd, 1976.
    [15] LIU B L. On fully indecomposable exponent for primitive Boolean matrices with symmetric ones[J]. Linear and Multilinear Algebra, 1992, 31(1/2/3/4):131-138. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/03081089208818129
  • 加载中
计量
  • 文章访问数:  1531
  • HTML全文浏览量:  772
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-25
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回