留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同提取剂提取土壤中重金属能力的对比研究

王建乐 谢仕斌 王冠 涂国权 方战强

王建乐, 谢仕斌, 王冠, 涂国权, 方战强. 不同提取剂提取土壤中重金属能力的对比研究[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 55-62. doi: 10.6054/j.jscnun.2020009
引用本文: 王建乐, 谢仕斌, 王冠, 涂国权, 方战强. 不同提取剂提取土壤中重金属能力的对比研究[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 55-62. doi: 10.6054/j.jscnun.2020009
WANG Jianle, XIE Shibin, WANG Guan, TU Guoquan, FANG Zhanqiang. A Comparative Study of the Capacity of Different Extractants to Extract Heavy Metals in Soil[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(1): 55-62. doi: 10.6054/j.jscnun.2020009
Citation: WANG Jianle, XIE Shibin, WANG Guan, TU Guoquan, FANG Zhanqiang. A Comparative Study of the Capacity of Different Extractants to Extract Heavy Metals in Soil[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(1): 55-62. doi: 10.6054/j.jscnun.2020009

不同提取剂提取土壤中重金属能力的对比研究

doi: 10.6054/j.jscnun.2020009
基金项目: 

国家重点研发计划项目 2018YFC1802800

广东省科技厅协同创新与平台建设专项 2017B090907032

详细信息
    通讯作者:

    方战强, 教授, zhqfang@scnu.edu.cn

  • 中图分类号: X53

A Comparative Study of the Capacity of Different Extractants to Extract Heavy Metals in Soil

  • 摘要: 为比较不同浸提剂的提取能力, 采用去离子水(DI)、硫酸-硝酸(AA)、二乙烯三胺五乙酸(DTPA)、醋酸缓冲溶液(TCLP)、氯化钙溶液(CC)对Cu、Ni、Pb、Cd复合污染土壤中的有效态重金属进行提取, 同时采用欧共体标准物质局提出的BCR连续提取法(BCR)和TESSIER提出的SEP连续提取法(Sequential Extraction Procedures)对污染土壤中的重金属进行形态分析, 探究了不同多级提取法中重金属形态分布的关系以及浸提剂浸出的重金属质量分数与多级提取法中重金属形态分布的关系.研究结果表明:各浸提剂的浸提能力从强到弱依次是:DTPA、TCLP、CC、AA、DI; 对于Cu和Ni元素, BCR法提取的活跃形态的质量分数与SEP法提取的活跃形态的质量分数相近; TCLP浸出重金属的质量分数与BCR连续提取法中重金属的形态存在紧密联系, TCLP浸提剂能提取出弱酸可提取态的重金属; DTPA浸出重金属的质量分数与SEP连续提取法中重金属的形态也存在紧密联系, DTPA浸提剂能提取出可交换态、碳酸盐结合态和铁锰氧化态的重金属.本研究结果可为重金属污染土壤修复评估标准提供参考依据.
  • 图  1  不同提取法下土壤中重金属形态的分布图

    Figure  1.  The species distribution of heavy metals in soil with different extraction methods

    图  2  DTPA浸出重金属的质量分数与土壤中重金属形态分布的关系

    Figure  2.  The relation between DTPA-based leachability of heavy metal fractions and heavy metal species distribution in soil

    图  3  TCLP浸出重金属的质量分数与土壤中重金属形态分布的关系

    Figure  3.  The relation between TCLP-based leachability of heavy metal fractions and heavy metal species distribution in soil

    表  1  土壤理化性质

    Table  1.   The basic physical and chemical properties of the test soil

    w(重金属)/(mg·kg-1) w(有机质)/(g·kg-1) pH 阳离子交换量/(cmol·kg-1)
    总铜 总镍 总铅 总镉
    157.9 181.6 270.3 126.7 36.2 6.10 11.7
    下载: 导出CSV

    表  2  单级提取法

    Table  2.   The single-stage extraction method

    浸提剂 参考方法 浸提剂配制方法 固液比 反应条件
    去离子水(DI) HJ 557-2010[13] 去离子水 1 :10 常温下以110±10 r/min震荡8 h, 静置16 h
    硫酸-硝酸(AA) HJ/T 299-2007[14] 将体积比为2:1的浓硫酸和浓硝酸混合, 将硫酸-硝酸混合液滴加入到去离子水中, 使溶液pH为3.20±0.05 1 :10 23±2 ℃下以30±2 r/min翻转震荡18±2 h
    二乙烯三胺五乙酸(DTPA) HJ 804-2016[15] 在烧杯中依次加入14.920 0 g三乙醇胺, 1.967 0 g二乙烯三胺五乙酸, 1.470 0 g二水合氯化钙, 加去离子水溶解并稀释至约800 mL, 用(1+1)浓盐酸调节pH为7.30±0.20, 转移至1 L容量瓶中定容至1 L 1 :2 20 ±2 ℃下以180±20 r/min震荡2 h
    醋酸缓冲溶液(TCLP) METHOD 1311[16] 500 mL去离子水中加入5.7 mL冰醋酸, 再加入64.3 mL 1 mol/L氢氧化钠, 定容至1 L, 此时溶液的pH为4.93±0.05 1 :20 23±2 ℃下以30±2 r/min翻转震荡18±2 h
    氯化钙浸提剂(CC) CaCl2浸提法[10] 去离子水中加入1.470 0 g二水合氯化钙, 搅拌均匀后定容至1 L 1 :10 20±2 ℃下以180±20 r/min震荡2 h
    下载: 导出CSV

    表  3  BCR连续提取法

    Table  3.   The BCR extraction method

    步骤 提取形态 提取方法
    弱酸可提取态(B1) 称取1.000 0 g风干后的土壤, 加入40 mL 0.11 mol/L醋酸, 22±5 ℃下震荡16 h
    可还原态(B2) 加入40 mL 0.5 mol/L盐酸羟胺(用HNO3调节pH为2.00), 22±5 ℃下震荡16 h
    可氧化态(B3) 加入10 mL 30% H2O2, 常温下震荡1 h, 再加入10 mL 30% H2O2, 加热至85±2 ℃震荡1 h, 再加入50 mL 1 mol/L醋酸铵溶液(用醋酸调节pH为2.00), 22±5 ℃下震荡16 h
    残余态(B4) 剩余部分按文献[20]消解
    下载: 导出CSV

    表  4  SEP连续提取法

    Table  4.   The SEP extraction method

    步骤 提取形态 提取方法
    可交换态(S1) 称取1.000 0 g风干后的土壤, 加入8 mL 1 mol/L醋酸钠溶液(pH为8.20), 常温下震荡1 h
    碳酸盐结合态(S2) 加入8 mL 1 mol/L醋酸钠溶液(用醋酸调节pH为5.00), 常温下震荡5 h
    铁锰氧化态(S3) 往25%冰醋酸中加入20 mL 0.04 mol/L盐酸羟胺(体积比=3:1), 然后加入20 mL该溶液, 96±3 ℃下间歇性搅拌6 h
    有机结合态(S4) 加入3 mL 0.02 mol/L HNO3和5 mL 30% H2O2(用HNO3调节pH为2.00), 85±2 ℃下间歇性搅拌2 h, 继续加入3 mL 30% H2O2(用HNO3调节pH为2.00), 85±2 ℃下间歇性搅拌3 h, 冷却, 加入5 mL醋酸铵混合液(3.2 mol/L醋酸铵与20% HNO 3的体积比为1:4), 稀释到20 mL, 常温下搅拌30 min
    残余态(S5) 剩余部分按文献[20]消解
    下载: 导出CSV

    表  5  不同浸提剂对重金属的浸提率

    Table  5.   The extraction rate of heavy metals with different extractants %

    浸提剂 Cu Ni Pb Cd
    DTPA 36.40±1.20 36.40±1.00 13.50±1.00 89.90±4.80
    CC 0.08±0.01 9.90±0.20 未检出 15.20±0.80
    TCLP 9.90±0.10 24.30±0.01 未检出 35.90±0.80
    AA 0.10±0.01 2.20±0.05 未检出 1.60±0.80
    DI 0.05±0.01 1.20±0.05 未检出 0.90±0.01
    下载: 导出CSV
  • [1] 傅阳, 凡玲, 黄雪莹.马缨丹对镉的耐性及Glomus intraradices对镉吸收转运的影响[J].华南师范大学学报(自然科学版), 2017, 49(2):122-128. doi: 10.6054/j.jscnun.2017069

    FU Y, FAN L, HUANG X Y. Cadmium tolerance and effects of Glomus intraradices on cadmium uptake and transport of Lantana camara L[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(2):122-128. doi: 10.6054/j.jscnun.2017069
    [2] VALIPOUR M, SHAHBAZI K, KHANMIRZAEI A. Chemical immobilization of lead, cadmium, copper and nickel in contaminated soils by phosphate amendments[J]. Clean-Soil Air Water, 2016, 44(5):572-578. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/clen.201300827
    [3] ZHANG L Y, GUO S H, WU B. The source, spatial distribution and risk assessment of heavy metals in soil from the pearl river delta based on the national multi-purpose regional geochemical survey[J]. Plos One, 2015, 10(7):2732-2740. http://cn.bing.com/academic/profile?id=9583276c76a7433508e4959aab131f86&encoded=0&v=paper_preview&mkt=zh-cn
    [4] XIAN F X. Chemical partitioning of cadmium, zinc, lead, and copper in soils near smelter[J]. Journal of Environmental Science and Health:Part A:Environmental Science and Engineering, 1987, 22(6):527-541. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/10934528709375368
    [5] 雷鸣, 廖柏寒, 秦普丰.土壤重金属化学形态的生物可利用性评价[J].生态环境, 2007(5):1551-1556. http://d.old.wanfangdata.com.cn/Periodical/tryhj200705043

    LEI M, LIAO B H, QIN P F. Assessment of bioavailability of heavy metal in contaminated soils with chemical fractionation[J]. Ecology and Environmental, 2007(5):1551-1556. http://d.old.wanfangdata.com.cn/Periodical/tryhj200705043
    [6] 任丽英.含硼铁锰氧化物中硼的释放特性及其在黄棕壤上的生物效应研究[D].武汉: 华中农业大学, 2009. http://cdmd.cnki.com.cn/article/cdmd-10504-2010271719.htm

    REN L Y. Boron release characteristics of boron-containing iron and manganese oxides and their biological effect on rape seeding in yellow-brown soil[D]. Wuhan: Huazhong Agricultural University, 2009. http://cdmd.cnki.com.cn/article/cdmd-10504-2010271719.htm
    [7] 李非里, 刘丛强, 宋照亮.土壤中重金属形态的化学分析综述[J].中国环境监测, 2005(4):21-27. http://d.old.wanfangdata.com.cn/Periodical/zghjjc200504007

    LI F L, LIU C Q, SONG Z L. A review of fractionation of heavy metals in soils[J]. Environmental Monitoring in China, 2005(4):21-27. http://d.old.wanfangdata.com.cn/Periodical/zghjjc200504007
    [8] MENZIES N W, DONN M J, KOPITTKE P M. Evaluation of extractants for estimation of the phytoavailable trace metals in soils[J]. Environmental Pollution, 2007, 145(1):121-130. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ea766eaa82c558b539256894e5c6a75
    [9] 刘锋, 王琪, 黄启飞, 等.固体废物浸出毒性浸出方法标准研究[J].环境科学研究, 2008(6):9-15. http://d.old.wanfangdata.com.cn/Periodical/hjkxyj200806002

    LIU F, WANG Q HUANG Q F, et al. Study on the standard methods of leaching toxicity of solid waste[J]. Research of Environmental Sciences, 2008(6):9-15. http://d.old.wanfangdata.com.cn/Periodical/hjkxyj200806002
    [10] 罗泽娇, 刘沛, 贾娜.土壤中重金属铅浸出毒性的方法研究[J].环境科学与技术, 2014, 37(11):86-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyjs201411016

    LUO Z J, LIU P, JIA N. Leaching toxicity method of lead extraction from soil[J]. Environmental Science and Technology, 2014, 37(11):86-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyjs201411016
    [11] 刘丹丹, 缪德仁, 刘菲.不同提取方法对土壤中活性部分重金属提取能力的对比研究[J].安徽农业科学, 2009, 37(35):17613-17615, 17619. http://d.old.wanfangdata.com.cn/Periodical/ahnykx200935132

    LIU D D, MIAO D R, LIU F. Comparative study on the extraction ability of some heavy metals in active parts of soil by different extraction methods[J]. Journal of Anhui Agricultural Sciences, 2009, 37(35):17613-17615, 17619. http://d.old.wanfangdata.com.cn/Periodical/ahnykx200935132
    [12] LI Y M, LEI M, CHEN T B, et al. Comparison of extractants for removing heavy metals and metalloids from contaminated soil of the iron and steel work site[J]. Disaster Advances, 2012, 5(1):99-104. http://cn.bing.com/academic/profile?id=3e790838660821344becf38735ae564c&encoded=0&v=paper_preview&mkt=zh-cn
    [13] 环境保护部.固体废物浸出毒性浸出方法水平震荡法: HJ 557-2010[S/OL].[2017-11-22]. http://www.doc88.com/p-0933765367117.html.
    [14] 国家环境保护总局.固体废物浸出毒性浸出方法硫酸硝酸法: HJ/T 299-2007[S/OL].[2017-11-19]. https://wenku.baidu.com/view/d2267a23d15abe23492f-4da4.html.
    [15] 环境保护部.土壤8种有效态元素的测定二乙烯三胺五乙酸浸提-电感耦合等离子体发射光谱法: HJ 804-2016[S/OL].[2017-11-20]. http://www.doc88.com/p-4863124488164.html.
    [16] United States Environmental Protection Agency. Toxicity characteristic leaching procedure: SW-846 test method 1311[S/OL].[2017-1-19]. https://www.epa.gov/hw-sw846/sw-846-test-method-1311-toxicity-characteristic-leaching-procedure.
    [17] QUEVAUVILLER P, RAURET G, LOPEZSANCHEZ J F, et al. Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure[J]. Science of the Total Environment, 1997, 205(2/3):223-234. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=47977fea0ceabc1e8c980cb057bc405c
    [18] TESSIER A, CAMPBELL P G, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7):844-851. doi: 10.1021-ac50043a025/
    [19] WANG Y, FANG Z, KANG Y, et al. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI[J]. Journal of Hazardous Materials, 2014, 275:230-237. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a0b8f04c391a110cd3d880c386e49c69
    [20] 环境保护部.土壤和沉积物12种金属元素的测定王水提取-电感耦合等离子体质谱法: HJ 803-2016[S/OL].[2017-11-20]. http://www.doc88.com/p-4804564488523.html.
    [21] 中华人民共和国农业部.土壤pH的测定: NY/T 1377-2007[S/OL].[2017-08-25]. http://www.doc88.com/p-38873757691.html.
    [22] 中华人民共和国农业部.土壤有机质测定法: GB 9834-88[S/OL].[2017-08-23]. https://max.book118.com/html/2017/0329/97796862.shtm.
    [23] 国家林业局.森林土壤阳离子交换量的测定: LY/T 1243-1999[S/OL].[2017-07-11]. http://www.doc88.com/p-73948577608.html.
    [24] MICHEL J M, SYLVIE F. Metal uptake by iron-efficient and inefficient oats[J]. Plant and Soil, 1994, 165(2):227-233.
    [25] 刘锋, 孙思修, 王鲁昕, 等.对用于危险废物鉴别的几种浸出方法比对研究[J].环境科学研究, 2005(S1):23-26. http://d.old.wanfangdata.com.cn/Periodical/hjkxyj2005z1006

    LIU F, SUN S X, WANG L X, et al. A comparison study on the leaching test methods used in hazardous waste identification[J]. Research of Environmental Sciences, 2005(S1):23-26. http://d.old.wanfangdata.com.cn/Periodical/hjkxyj2005z1006
    [26] SUN Y, XU Y, XU Y, et al. Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials[J]. Environmental Pollution, 2015, 208(Pt B):739-746. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3b3d049a1a4e6228018ade0b9905dca5
    [27] 李永涛, 刘科学, 张池, 等.广东大宝山地区重金属污染水田土壤的Cu Pb Zn Cd全量与DTPA浸提态含量的相互关系研究[J].农业环境科学学报, 2004(6):1110-1114.

    LI Y T, LIU K X, ZHANG C, et al. Relationships between total and DTPA extractable contents of Cu, Pb, Zn, Cd in trace metal contaminated paddy soils of Dabaoshan, Guangdong[J]. Journal of Agro-Environment Science, 2004(6):1110-1114.
    [28] BOUCHRA K, MOHAMED E M, ABDERRAHMANE R, et al. Assessment of heavy metal availability (Pb, Cu, Cr, Cd, Zn) and speciation in contaminated soils and sediment of discharge by sequential extraction[J]. Environmental Earth Sciences, 2015, 74(7):5849-5858. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=20211ff9afe5e0dffeda4d9e1764fbda
    [29] SCHRAMEL O, MICHALKE B, KETTRUP A. Study of the copper distribution in contaminated soils of hop fields by single and sequential extraction procedures[J]. Science of the Total Environment, 2000, 263(1/2/3):11-22. http://cn.bing.com/academic/profile?id=704f9998903dba1d61cff048a9c22ca2&encoded=0&v=paper_preview&mkt=zh-cn
    [30] DAI J, BECQUER T, ROUILLER J H, et al. Influence of heavy metals on C and N mineralization and microbial biomass in Zn, Pb, Cu, and Cd contaminated soils[J]. App-lied Soil Ecology, 2004, 25(2):99-109.
    [31] CUTILLAS B L, PARADELO R, IGREXAS S A, et al. Valorization of biosorbent obtained from a forestry waste:competitive adsorption, desorption and transport of Cd, Cu, Ni, Pb and Zn[J]. Ecotoxicology and Environmental Safety, 2016, 131:118-126. http://cn.bing.com/academic/profile?id=1410a7792046569a30c9dc7daef6d472&encoded=0&v=paper_preview&mkt=zh-cn
    [32] ANTONIO G C, ANTONIO V. Chemical processes affecting the mobility of heavy metals and metalloids in soil environments[J]. Current Pollution Reports, 2016, 2(1):15-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ee77084f912a799f2856003ffd6984dc
    [33] 丁巧蓓, 晁元卿, 王诗忠, 等.根际微生物群落多样性在重金属土壤修复中的研究[J].华南师范大学学报(自然科学版), 2016, 48(2):1-12. doi: 10.6054/j.jscnun.2015.11.009

    DING Q B, CHAO Y Q, WANG S Z, et al. Research on function of rhizosphere microbial diversity in phytoremediation of heavy metal polluted soils[J]. Journal of South China Normal University (Natural Science Edition), 2016, 48(2):1-12. doi: 10.6054/j.jscnun.2015.11.009
    [34] 钟晓兰, 周生路, 黄明丽, 等.土壤重金属的形态分布特征及其影响因素[J].生态环境学报, 2009, 18(4):1266-1273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tryhj200904013

    ZHONG X L, ZHOU S L, HUANG M L, et al. Chemical form distribution characteristic of soil heavy metals and its influencing factors[J]. Ecology and Environmental Science, 2009, 18(4):1266-1273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tryhj200904013
    [35] JOSE M S D, IGNACIO G, JOSE N P, et al. Evaluation of single chemical extractants for the prediction of heavy metal uptake by barley in soils amended with polluted sewage sludge[J]. Plant and Soil, 2010, 327(1/2):303-314. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c116b433b76288784e1d98a15e9fdc95
    [36] SIZIRICI B, YILDIZ I, ALYAMMAHI A, et al. Adsorptive removal capacity of gravel for metal cations in the absence/presence of competitive adsorption[J]. Environmental Science and Pollution Research, 2017, 25(8):7530-7540. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b9a4bac2fc14e57f476b0db879f70f2a
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  1919
  • HTML全文浏览量:  998
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-14
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回