留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工湿地系统对生活污水中类固醇激素的去除效果

何璐茜 陈军 应光国

何璐茜, 陈军, 应光国. 人工湿地系统对生活污水中类固醇激素的去除效果[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 44-54. doi: 10.6054/j.jscnun.2020008
引用本文: 何璐茜, 陈军, 应光国. 人工湿地系统对生活污水中类固醇激素的去除效果[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 44-54. doi: 10.6054/j.jscnun.2020008
HE Luxi, CHEN Jun, YING Guangguo. The Effect of Constructed Wetlands on Removing Steroid Hormones in Domestic Sewage[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(1): 44-54. doi: 10.6054/j.jscnun.2020008
Citation: HE Luxi, CHEN Jun, YING Guangguo. The Effect of Constructed Wetlands on Removing Steroid Hormones in Domestic Sewage[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(1): 44-54. doi: 10.6054/j.jscnun.2020008

人工湿地系统对生活污水中类固醇激素的去除效果

doi: 10.6054/j.jscnun.2020008
基金项目: 

国家自然科学基金项目 41877359

中国博士后科学基金项目 2017M622725

广东省自然科学基金项目 2018A0303130152

详细信息
    通讯作者:

    陈军, 高级工程师, Email:jun.chen0304@foxmail.com

    应光国, 研究员, Email:guangguo.ying@m.scnu.edu.cn

  • 中图分类号: O43

The Effect of Constructed Wetlands on Removing Steroid Hormones in Domestic Sewage

  • 摘要: 为了考察建立在室外的12个不同基质(牡蛎壳、沸石、麦饭石、陶粒)、不同水力负荷(HLP=10、20、30 cm/d)的中试人工湿地(CWs)对常规污染指标(COD、TN和NH4+-N)和激素的去除能力差异, 筛选出最优的湿地基质种类和水力负荷, 同时通过污染物通量核算推断出湿地系统对激素的去除途径.结果表明:在进水中共检出9种激素, 包括雄烯二酮、17α-勃地酮、17β-勃地酮、1, 4-雄烯二酮、雄酮、羟孕酮、甲孕酮、黄体酮及睾丸素, 质量浓度在6.32~1 113 ng/L范围内; 不同设计参数下的湿地单元对常规污染指标和激素的去除效果差异较大, 对所有检出激素的总去除率为27.7%~94.9%;COD、TN、NH4+-N的日去除通量分别为3.81~10.10、0.42~1.07、0.31~0.80 g/d, 所有检测出的激素日去除通量为14.16~28.65 μg/d.综合考虑湿地系统对常规污染指标、激素的去除率和去除通量的影响发现:以沸石为基质、水力负荷为20 cm/d的湿地单元为最佳选择.质量平衡核算结果表明:基质吸附和微生物降解是湿地系统去除激素物质的主要途径, 且以微生物降解为主导.
  • 图  1  中试人工湿地系统的设计

    Figure  1.  The design of mesocosm-scale constructed wetlands

    图  2  4种基质的SEM图

    Figure  2.  The SEM images of the four substrates

    图  3  4种基质的傅里叶-变换红外光谱

    Figure  3.  The FT-IR spectra of four substrates

    图  4  人工湿地系统进水中激素的质量浓度

    Figure  4.  The concentrations of steroids in the influent of the constructed wetlands

    图  5  中试人工湿地系统中不同水力负荷对激素的去除率

    Figure  5.  The removal rate of the total steroids in the mesocosm-scale constructed wetlands with different hydraulic loads

    表  1  28种目标化合物及6种内标物质

    Table  1.   The 28 target compounds and 6 internal standard substances

    中文名称 英文名称 英文缩写 CAS号 分子式
    1, 4-雄烯二酮 androsta-1, 4-diene-3, 17-dione ADD 897-06-3 C19H24O2
    雄烯二酮 4-androstene-3, 17-dione AED 63-05-8 C19H26O2
    雄酮 androsterone ADR 53-41-8 C19H30O2
    17α-勃地酮 17α-boldenone 17α-BOL 27833-18-7 C19H26O2
    17β-勃地酮 17β-boldenone 17β-BOL 846-48-0 C19H26O2
    5α-二氢睾酮 5α-dihydrotestosterone 5α-DHT 521-18-6 C19H30O2
    表雄甾酮 epi-androsterone EADR 481-29-8 C19H30O2
    4-羟基雄烯二酮 4-hydroxy-androst-4-ene-17-dione 4-OHA 566-48-3 C19H26O3
    甲基睾酮 methyl testosterone MT 58-18-4 C20H30O2
    诺龙 19-nortestosterone 19-NT 434-22-0 C18H26O2
    睾丸素 testosterone T 58-22-0 C19H28O2
    表群勃龙 17α-trenbolone 17α-TBL 80657-17-6 C18H22O2
    群勃龙/追宝龙 17β-trenbolone 17β-TBL 10161-33-8 C18H22O2
    司坦唑醇 stanozolol S 10418-03-8 C21H32N2O
    雌酮 estrone E1 53-16-7 C18H22O2
    17β-雌二醇 17β-estradiol E2 50-28-2 C18H24O2
    炔雌醇 17α-ethynylestradiol EE2 57-63-6 C20H24O2
    地塞米松 diethylstilbestrol DES 56-53-1 C18H20O2
    氢化可的松 cortisol CRL 50-23-7 C21H30O5
    可的松 cortisone CRN 53-06-5 C21H28O5
    地塞米松 dexamethasone DEX 50-02-2 C22H29FO5
    氢化泼尼松 prednisolone PREL 50-24-8 C21H28O5
    泼尼松 prednisone PRE 53-03-2 C21H26O5
    炔孕酮 ethynyl testosterone ET 434-03-7 C21H28O2
    甲孕酮 medroxyprogesterone MP 520-85-4 C22H32O3
    19-炔诺酮 19-norethindrone 19-NTD 68-22-4 C20H26O2
    甲基炔诺酮 norgestrel NGT 6533-00-2 C21H28O2
    黄体酮 progesterone P 57-83-0 C21H30O2
    睾丸素* tesosterone-16, 16, 17-d3 T-d3 77546-39-5 C19H25D3O2
    雌酮* estrone-2, 4, 16, 16-d4 E1-d4 53866-34-5 C18H18D4O2
    黄体酮* progesterone-d9 P-d9 15775-74-3 C21H21D9O2
    17β-雌二醇* 17β-estradiol-2, 4, 16, 16-d4 E2-d4 66789-03-5 C18H20D4O2
    司坦唑醇* stanozolol-d3 S-d3 88247-87-4 C21H29D3N2O
    氢化可的松* cortisol-d2 CRL-d2 79037-25-5 C21H28D2O5
    注:*为内标物质.
    下载: 导出CSV

    表  2  12个中试人工湿地系统的采样点布设

    Table  2.   The sampling locations of 12 mesocosm-scale constructed wetlands

    HLR/(cm·d-1) 基质种类
    牡蛎壳 沸石 麦饭石 陶粒
    10 CW1 CW4 CW7 CW10
    20 CW2 CW5 CW8 CW11
    30 CW3 CW6 CW9 CW12
    下载: 导出CSV

    表  3  人工湿地系统进水的水质参数

    Table  3.   The water quality parameters in influent of constructed wetland system

    水质参数 监测值
    T/℃ 17.9
    pH 7.96
    ρ(DO)/(mg·L-1) 0.22
    电导率σ/(μS·cm-1) 130
    氧化还原电位ORP/mV 155
    ρ(COD)/(mg·L-1) 117
    ρ(TN)/(mg·L-1) 54.9
    ρ(NH4+-N)/(mg·L-1) 29.7
    下载: 导出CSV

    表  4  中试人工湿地系统出水的水质参数及常规污染指标的去除率(牡蛎壳)

    Table  4.   The wastewater quality parameters of effluents in themesocosm-scale constructed wetlands and the removal rate of conventional wastewater pollutants

    HLR/(cm·d-1) 水质参数 基质 去除率/%
    T pH ρ(DO) σ ORP ρ(COD) ρ(TN) ρ(NH4+-N) ρ(TN) ρ(NH4+-N) COD TN NH4+-N
    10 14.8 8.06 0.72 115 162 37.4 30.6 20.1 1 016 0.04 68.0 44.3 32.5
    20 15.0 8.03 0.47 114 153 52.9 39.5 22.9 921 0.01 54.7 28.0 23.1
    30 15.1 8.01 0.57 113 151 75.5 45.2 25.3 1 064 0.02 35.3 17.7 14.9
    注:HLR为水力负荷(cm/d); T为水样温度(℃); ρ(DO)为溶解氧质量浓度(mg/L); σ为电导率(μS/cm); ORP为氧化还原电位(mV); ρ(COD)、ρ(TN)、ρ(NH4+-N)分别为化学需氧量、总氮、氨氮的质量浓度(mg/L).下表同.
    下载: 导出CSV

    表  5  中试人工湿地系统出水的水质参数及常规污染指标及去除率(沸石)

    Table  5.   The wastewater quality parameters of effluents in themesocosm-scale constructed wetlands and the removal rate of conventional wastewater pollutants

    HLR/(cm·d-1) 水质参数 基质 去除率/%
    T pH ρ(DO) σ ORP ρ(COD) ρ(TN) ρ(NH4+-N) ρ(TN) ρ(NH4+-N) COD TN NH4+-N
    10 14.9 8.06 0.65 111 157 37.4 32.6 19.4 545 0.05 68.0 40.6 34.8
    20 15.0 8.02 0.65 111 153 34.3 31.3 23.2 554 0.04 70.7 43.1 22.0
    30 15.5 8.04 0.64 114 156 46.7 41.2 24.1 675 0.05 60.0 24.9 19.0
    下载: 导出CSV

    表  6  中试人工湿地系统出水的水质参数及常规污染指标的去除率(麦饭石)

    Table  6.   The wastewater quality parameters of effluents in themesocosm-scale constructed wetlands and the removal rate of conventional wastewater pollutants

    HLR/(cm·d-1) 水质参数 基质 去除率/%
    T pH ρ(DO) σ ORP ρ(COD) ρ(TN) ρ(NH4+-N) ρ(TN) ρ(NH4+-N) COD TN NH4+-N
    10 14.8 8.06 0.72 115 162 37.4 30.6 20.1 303 0.22 74.0 24.9 19.0
    20 15.0 8.03 0.47 114 153 52.9 39.5 22.9 281 0.02 67.0 23.3 22.0
    30 15.1 8.01 0.57 113 151 75.5 45.2 25.3 156 0.08 60.7 25.0 17.5
    下载: 导出CSV

    表  7  中试人工湿地系统出水的水质参数及常规污染指标的去除率(陶粒)

    Table  7.   The wastewater quality parameters of effluents in themesocosm-scale constructed wetlands and the removal rate of conventional wastewater pollutants

    HLR/(cm·d-1) 水质参数 基质 去除率/%
    T pH ρ(DO) σ ORP ρ(COD) ρ(TN) ρ(NH4+-N) ρ(TN) ρ(NH4+-N) COD TN NH4+-N
    10 15.2 8.16 0.48 121 178 31.1 29.7 22.8 179 1.41 73.3 45.9 23.5
    20 15.3 8.07 0.44 121 162 45.9 37.9 26.3 145 0.92 60.7 30.9 11.5
    30 15.4 8.03 0.65 123 160 65.4 46.1 27.0 127 0.02 44.0 16.1 9.2
    下载: 导出CSV

    表  8  不同基质系统中2种激素的检出质量分数

    Table  8.   The mass fractions of the two detected steroids in systems with different substrates ng/g

    基质 HLR/(cm·d-1) w(1, 4-雄烯二酮) w(雄烯二酮)
    牡蛎壳 10 0.35±0.00 0.16±0.01
    20 0.35±0.02 0.23±0.01
    30 0.38±0.01 0.17±0.00
    沸石 10 0.53±0.01 0.57±0.03
    20 0.56±0.01 0.50±0.02
    30 0.51±0.01 0.48±0.04
    麦饭石 10 0.41±0.00 0.47±0.02
    20 0.37±0.01 0.28±0.04
    30 0.41±0.00 0.31±0.02
    陶粒 10 1.88±0.06 1.82±0.16
    20 1.51±0.08 1.29±0.02
    30 1.66±0.06 1.70±0.06
    下载: 导出CSV

    表  9  中试人工湿地系统对激素和常规污染指标的去除通量

    Table  9.   Removal of the mass loadings of steroids and conventional wastewater pollutants by the mesocosm-scale constructed wetlands

    基质 HLR/(cm·d-1) Mh, d/(μg·d-1) Mp, d/(g·d-1)
    A B C D E F G H I 总激素 COD TN NH4+-N
    牡蛎壳 10 3.02 0.39 0.07 4.50 5.62 0.16 0.08 0.42 0.06 14.2 3.81 0.62 0.63
    20 5.58 0.72 0.14 8.70 10.00 0.32 0.16 0.70 0.12 26.2 6.13 0.88 0.66
    30 6.78 0.93 0.12 10.70 -2.19 0.48 0.24 0.48 0.18 17.3 5.86 0.84 0.46
    沸石 10 3.26 0.43 0.10 4.88 9.69 0.16 0.08 0.42 0.06 18.9 3.81 0.66 0.50
    20 6.04 0.86 0.16 8.96 10.80 0.32 0.16 0.74 0.12 27.1 7.92 0.84 0.63
    30 8.43 1.29 0.21 12.79 5.00 0.48 0.24 0.50 0.18 28.7 9.95 1.07 0.80
    麦饭石 10 3.30 0.43 0.10 4.90 10.40 0.16 0.08 0.44 0.06 19.7 4.15 0.42 0.31
    20 5.98 0.86 0.16 9.06 6.62 0.32 0.16 0.78 0.12 23.8 7.51 0.67 0.50
    30 8.98 1.29 0.21 12.90 -1.00 0.48 0.24 1.14 0.18 23.9 10.10 0.73 0.55
    陶粒 10 3.24 0.43 0.10 4.83 10.30 0.16 0.08 0.37 0.06 19.4 4.11 0.45 0.34
    20 5.66 0.86 0.14 8.62 11.30 0.32 0.16 0.72 0.12 27.6 6.80 0.44 0.33
    30 7.82 1.29 0.18 12.00 4.95 0.48 0.24 0.69 0.18 27.3 7.30 0.52 0.39
    注:A为雄烯二酮; B为17α-勃地酮; C为17β-勃地酮; D为1, 4-雄烯二酮; E为雄酮; F为羟孕酮; G为甲孕酮; H为黄体酮; I为睾丸素. Mh, d为激素的日去除通量; Mp, d为常规污染物的日去除通量.
    下载: 导出CSV

    表  10  人工湿地系统在运行期间通过不同途径对激素的总去除率的贡献比

    Table  10.   The mass removal percentages of steroids with different mechanisms in the mesocosm-scale constructed wetlands during the operation period %

    湿地 总去除率 贡献比
    基质吸附 微生物及其他降解
    CW1 68.1 0.1 99.9
    CW2 62.9 0.1 99.9
    CW3 27.7 0.1 99.9
    CW4 91.0 7.8 92.2
    CW5 65.2 4.7 95.3
    CW6 45.9 4.6 95.4
    CW7 94.9 4.3 95.7
    CW8 57.1 2.5 97.5
    CW9 37.5 2.8 97.2
    CW10 93.4 13.0 87.0
    CW11 66.3 6.4 93.6
    CW12 43.7 8.2 91.8
    下载: 导出CSV
  • [1] JI G, SUN T, ZHOU Q, et al. Constructed subsurface flow wetland for treating heavy oil-produced water of the Liaohe Oilfield in China[J]. Ecological Engineering, 2002, 18(4):459-465. doi: 10.1016/S0925-8574(01)00106-9
    [2] VYMAZAL J. Constructed wetlands for wastewater treatment:five decades of experience[J]. Environmental Science & Technology, 2010, 45(1):61-69. doi: 10.1021-es101403q/
    [3] PUIGAGUT J, CASELLES-OSONO A, VAELLO N, et al. Fractionation, biodegradability and particle-size distribution of organic matter in horizontal subsurface-flow constructed wetlands[M]//Wastewater Treatment, Plant Dynamics and Management in Constructed and Natural Wetlands. Dordrecht: Springer, 2008: 289-297.
    [4] 于少鹏, 王海霞, 万忠娟, 等.人工湿地污水处理技术及其在我国发展的现状与前景[J].地理科学进展, 2004, 23(1):22-29. doi: 10.3969/j.issn.1007-6301.2004.01.003

    YU S P, WANG H X, WAN Z J, et al. Treatment techno-logy of wastewater using constructed wetland and its present status and future prospects in China[J]. Progress in Geography, 2004, 23(1):22-29. doi: 10.3969/j.issn.1007-6301.2004.01.003
    [5] BAHGAT M, DEWEDAR A, ZAYED A. Sand-filters used for wastewater treatment:buildup and distribution of microorganisms[J]. Water Research, 1999, 33(8):1949-1955. doi: 10.1016/S0043-1354(98)00290-5
    [6] CAROLINA R, MARIA H, RICARDO S, et al. Temporal evolution in PPCP removal from urban wastewater by constructed wetlands of different configuration:a medium-term study[J]. Chemosphere, 2012, 88(2):161-167. doi: 10.1016/j.chemosphere.2012.02.064
    [7] NGUYEN L M. Organic matter composition, microbial biomass and microbial activity in gravel-bed constructed wetlands treating farm dairy wastewaters[J]. Ecological Engineering, 2000, 16(2):199-221. doi: 10.1016/S0925-8574(00)00044-6
    [8] YEH T, CHOU C, PAN C. Heavy metal removal within pilot-scale constructed wetlands receiving river water contaminated by confined swine operations[J]. Desalination, 2009, 249(1):368-373. doi: 10.1016/j.desal.2008.11.025
    [9] KOZUB D, LIEHR S. Assessing denitrification rate limi-ting factors in a constructed wetland receiving landfill leachate[J]. Water Science and Technology, 1999, 40(3):75-82. doi: 10.2166/wst.1999.0140
    [10] SUNDBERG C, TONDERSKI K, LINDG-REN P E. Potential nitrification and denitrification and the corresponding composition of the bacterial communities in a compact constructed wetland treating landfill leachates[J]. Water Science and Technology, 2007, 56(3):159-166. doi: 10.2166/wst.2007.524
    [11] 朱斌, 陈飞星, 陈增奇.利用水生植物净化富营养化水体的研究进展[J].上海环境科学, 2002(9):564-567. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shhjkx200209014

    ZHU B, CHEN F X, CHEN Z Q. Study progress on purification of eutrophic water by aquatic macrophytes[J]. Shanghai Environmental Science, 2002(9):564-567. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shhjkx200209014
    [12] 聂志丹, 年跃刚, 金相灿, 等. 3种类型人工湿地处理富营养化水体中试比较研究[J].环境科学, 2007, 28(8):1675-1680. doi: 10.3321/j.issn:0250-3301.2007.08.005

    NIE Z D, NIAN Y G, JIN X C, et al. Pilot-scale comparison research of different constructed wetland types to treat eutrophic lake water[J]. Environmental Science, 2007, 28(8):1675-1680. doi: 10.3321/j.issn:0250-3301.2007.08.005
    [13] 桂召龙, 李毅, 沈捷, 等.采油废水人工湿地处理效果及植物作用分析[J].环境工程, 2011, 29(2):5-9. doi: 10.3969/j.issn.1671-1556.2011.02.002

    GUI Z L, LI Y, SHEN J, et al. Treatment efficiency of oilfield produced wastewater by constructed wetland and the role of plants[J]. Environmental Engineering, 2011, 29(2):5-9. doi: 10.3969/j.issn.1671-1556.2011.02.002
    [14] 籍国东, 孙铁珩, 常士俊, 等.自由表面流人工湿地处理超稠油废水[J].环境科学, 2001, 22(4):95-99. doi: 10.3321/j.issn:0250-3301.2001.04.021

    JI G D, SUN T H, CHANG S J, et al. Super heavy oil produced water treatment by surface flow constructed wetland[J]. Environmental Science, 2001, 22(4):95-99. doi: 10.3321/j.issn:0250-3301.2001.04.021
    [15] MMERER K. Antibiotics in the aquatic environment-a review-part I[J]. Chemosphere, 2009, 75(4):417-434. doi: 10.1016/j.chemosphere.2008.11.086
    [16] 邓茂先, 陈祥贵.环境内分泌干扰物研究进展[J].国外医学(卫生学分册), 2000(2):65-68. http://d.old.wanfangdata.com.cn/Periodical/sxsfdxxb201602014

    DENG M X, CHEN X G. Study progress on environmental endocrine disruptors[J]. Foreign Medicine (Hygiene), 2000(2):65-68. http://d.old.wanfangdata.com.cn/Periodical/sxsfdxxb201602014
    [17] 邱东茹, 吴振斌.环境雌激素对动物和人体的影响及其作用机制[J].水生生物学报, 1997, 21(4):365-374. doi: 10.3321/j.issn:1000-3207.1997.04.012

    QIU D R, WU Z B. Effects of environmental estrogens on animals and humans[J]. Acta Hydrobiologica Sinica, 1997, 21(4):365-374. doi: 10.3321/j.issn:1000-3207.1997.04.012
    [18] 刘双双.养殖环境中孕激素物质的污染特征及其微生物降解转化规律[D].广州: 中国科学院广州地理化学研究所, 2015.

    LIU S S. Occurrence and biotransformation of progestagens in various animal farm environments[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Aca-demy of Sciences, 2015.
    [19] 孙艳, 黄璜, 胡洪营, 等.污水处理厂出水中雌激素活性物质浓度与生态风险水平[J].环境科学研究, 2010, 23(12):1488-1493. http://d.old.wanfangdata.com.cn/Periodical/hjkxyj201012007

    SUN Y, HUANG H, HU H Y, et al. Concentration and ecological risk level of estrogenic endocrine-disrupting Chemicals in the effluents from wastewater treatment plants[J]. Research of Environmental Sciences, 2010, 23(12):1488-1493. http://d.old.wanfangdata.com.cn/Periodical/hjkxyj201012007
    [20] 籍国东, 倪晋仁.人工湿地废水生态处理系统的作用机制[J].环境工程学报, 2004, 5(6):71-75. doi: 10.3969/j.issn.1673-9108.2004.06.018

    JI G D, NI J R. Mechanisms of constructed wetland waste-water ecological treatment systems[J]. Chinese Journal of Environmental Engineering, 2004, 5(6):71-75. doi: 10.3969/j.issn.1673-9108.2004.06.018
    [21] 白晓慧, 王宝贞, 余敏, 等.人工湿地污水处理技术及其发展应用[J].哈尔滨建筑大学学报, 1999(6):88-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900261725

    BAI X H, WANG B Z, YU M, et al. Development of constructed wetland wastewater treatment technology and its application in China[J]. Journal of Harbin University of Construction, 1999(6):88-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900261725
    [22] ROUQUEROL J, AVNIR D, FAIRBRIDGE C, et al. Recommendations for the characterization of porous solids[J]. Pure and Applied Chemistry, 1994, 66(8):1739-1758. doi: 10.1351/pac199466081739
    [23] HU E, CHENG H, HU Y. Microwave-induced degradation of atrazine sorbed in mineral micropores[J]. Environmental Science & Technology, 2012, 46(9):5067-5076. http://cn.bing.com/academic/profile?id=935df2928a0aa74e4c8008b9ac03fd21&encoded=0&v=paper_preview&mkt=zh-cn
    [24] HU Y S, ZHAO Y Q, ZHAO X H, et al. Comprehensive analysis of step-feeding strategy to enhance biological nitrogen removal in alum sludge-based tidal flow constructed wetlands[J]. Bioresource Technology, 2012, 111(5):27-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0ff58db6bb8d026f22a084a822a58e67
    [25] 李淑彬, 陈振军.微生物降解酚类化合物的研究进展[J].华南师范大学学报(自然科学版), 2005, 11(4):136-141. doi: 10.3969/j.issn.1000-5463.2005.04.025

    LI S B, CHEN Z J. Research advances in microbiodegradation of compound of phenols[J]. Journal of South China Normal University(Natural Science Edition), 2005, 11(4):136-141. doi: 10.3969/j.issn.1000-5463.2005.04.025
    [26] BOSCOBOINIK J A, XIN Y, EMMEZ E, et al. Interaction of probe molecules with bridging hydroxyls of two-dimensional zeolites:a surface science approach[J]. The Journal of Physical Chemistry C, 2013, 117(26):13547-13556. doi: 10.1021/jp405533s
    [27] 阳春, 胡碧波, 张智.类固醇雌激素在生活污水处理中的去除过程[J].中国给水排水, 2008, 24(10):11-15. doi: 10.3321/j.issn:1000-4602.2008.10.003

    YANG C, HU B B, ZHANG Z. Removal of steriod oestrogens during sewage treatment[J]. China Water & Wastewater, 2008, 24(10):11-15. doi: 10.3321/j.issn:1000-4602.2008.10.003
    [28] 魏晓东, 刘叶新, 周志洪, 等.广州典型排放源废水中抗生素的污染特征和去除效果[J].华南师范大学学报(自然科学版), 2018, 50(1):11-20. doi: 10.6054/j.jscnun.2018010

    WEI X D, LIU Y X, ZHOU Z H, et al. Occurrence and removal of antibiotics from wastewater of typical emission sources in guangzhou, China[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(1):11-20. doi: 10.6054/j.jscnun.2018010
    [29] 陈军.生活污水中抗生素和耐药基因的人工湿地去除机制与系统优化[D].广州: 中国科学院广州地球化学研究所, 2017.

    CHEN J. Removal of antibiotics and ARGs from domestic sewage by constructed wetlands: removal mechanism and system optimization[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2017.
    [30] 刘建, 张文龙, 李轶, 等.环境内分泌干扰物在人工湿地中的去除研究[J].环境工程, 2011, 29(2):24-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjgc201102007

    LIU J, ZHANG W L, LI Y, et al. Removal of endocrine disrupting compounds(EDCs) in construcred wetland[J]. Environmental Engineering, 2011, 29(2):24-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjgc201102007
    [31] 成水平.人工湿地废水处理系统的生物学基础研究进展[J].湖泊科学, 1996, 8(3):268-273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600083236

    CHENG S P. Advances in biological fundamental studies on artificial wetland wastewater treatment system[J]. Jour-nal of Lake Sciences, 1996, 8(3):268-273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600083236
    [32] 郭杏妹, 刘素娥, 张秋云, 等.三种人工湿地植物处理农村生活污水的净化效果[J].华南师范大学学报(自然科学版), 2010(1):21-21. http://journal-n.scnu.edu.cn/article/id/403

    GUO X M, LIU S E, ZHANG Q Y, et al. Research on the relationship between monthly mean tem perature and monthly electricity consumption for guangzhou, hongkong and macau[J]. Journal of South China Normal University (Natural Science Edition), 2010(1):21-21. http://journal-n.scnu.edu.cn/article/id/403
  • 加载中
图(5) / 表(10)
计量
  • 文章访问数:  1675
  • HTML全文浏览量:  628
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-21
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回