留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

菌株Pseudomonas.BTs降解转化3种苯并三唑类化合物

石洲旗 刘有胜 蔡稳稳 熊倩 杨愿愿 应光国

石洲旗, 刘有胜, 蔡稳稳, 熊倩, 杨愿愿, 应光国. 菌株Pseudomonas.BTs降解转化3种苯并三唑类化合物[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 36-43. doi: 10.6054/j.jscnun.2020007
引用本文: 石洲旗, 刘有胜, 蔡稳稳, 熊倩, 杨愿愿, 应光国. 菌株Pseudomonas.BTs降解转化3种苯并三唑类化合物[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 36-43. doi: 10.6054/j.jscnun.2020007
SHI Zhouqi, LIU Yousheng, CAI Wenwen, XIONG Qian, YANG Yuanyuan, YING Guangguo. Biotransformation of Three Benzotriazoles with Bacterial Strain Pseudomonas.BTs[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(1): 36-43. doi: 10.6054/j.jscnun.2020007
Citation: SHI Zhouqi, LIU Yousheng, CAI Wenwen, XIONG Qian, YANG Yuanyuan, YING Guangguo. Biotransformation of Three Benzotriazoles with Bacterial Strain Pseudomonas.BTs[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(1): 36-43. doi: 10.6054/j.jscnun.2020007

菌株Pseudomonas.BTs降解转化3种苯并三唑类化合物

doi: 10.6054/j.jscnun.2020007
基金项目: 

国家自然科学基金项目 41877359

详细信息
    通讯作者:

    刘有胜, 副研究员, Email:yousheng.liu@m.scnu.edu.cn

  • 中图分类号: X13;Q936

Biotransformation of Three Benzotriazoles with Bacterial Strain Pseudomonas.BTs

  • 摘要: 在好氧条件下分离获得一株苯并三唑类化合物(Benzotriazoles, BTs)降解菌, 通过16S rDNA测序和数据库比对分析显示与Pseudomonas.taiwanensis BCRC 17751同源性最高, 并将该菌株命名为Pseudomonas.BTs.该菌株在外加碳源存在时能够以不同的速率降解3种典型BTs(苯并三唑, BTri; 5-甲基苯并三唑, 5-TTri; 5-氯-苯并三唑, CBT), 但无法以BTs为唯一碳源.测试了Pseudomonas.BTs利用11种外加碳源作为生长基质共代谢BTs的效果.结果表明:外加碳源投加质量比(mC:mBTs)=1 000:1时比100:1的情况更有利于BTs的共代谢.在11种外碳源中, 葡萄糖、谷氨酸钠和乙醇最有利于Pseudomonas.BTs共代谢BTs, 而当以苯酚、麦芽糖、淀粉作为外碳源时, BTs的共代谢完全没有发生.利用超高效液相色谱与四极杆飞行时间高分辨率质谱联用技术鉴定了Pseudomonas.BTs转化BTri、5-TTri和CBT的产物.结果表明:3种BTs化合物具有相对一致的转化路径, 包括异构化、甲基化、甲氧基化以及其它官能团的加成反应.多数产物为首次被发现.研究结果可以为探索微生物转化BTs的机理、优化去除BTs的研究提供参考.
  • 图  1  BTri、5-TTri及CBT在Pseudomonas.BTs作用下的生物降解曲线

    注:拟合方程:(A)Y=53.34e-x/18.71+3.43e-x/0.017+43.26, R2=0.98, p < 0.01, t1/2=38.69 d; (B)Y=-425.03ex/739.58-425.03ex/732.93+950.13, R2=0.95, p < 0.01, t1/2=42.15 d; (C)Y=-53.91e-x/5.31+425.03e-x/5.31-7.11, R2=0.99, p < 0.01, t1/2=3.37 d.

    Figure  1.  The biodegradation curves of BTri, 5-TTri and CBT with Pseudomonas.BTs

    图  2  Pseudomonas.BTs的系统发育树

    Figure  2.  The phylogenetic tree of Pseudomonas.BTs

    图  3  Pseudomonas.BTs的生长曲线

    Figure  3.  The growth curve of Pseudomonas.BTs

    图  4  11种碳源添加条件下Pseudomonas.BTs对BTri、5-TTri及CBT的共代谢

    Figure  4.  The co-metabolism of BTri, 5-TTri and CBT with Pseudomonas.BTs in the presence of 11 external carbon sources

    图  5  转化产物的结构式

    Figure  5.  The structural formula of the products

    表  1  BTs在Pseudomonas.BTs作用下的转化产物信息

    Table  1.   The information of transformation products of BTs with Pseudomonas.BTs

    化合物 产物 带电荷模式 质荷比 出峰时间 分子式 辛醇-水分配系数
    BTri TP1 [M+H]+
    [M-H]-
    120.055 6
    118.041 1
    6.9 C6H5N3 0.17
    TP2 [M+H]+
    [M-H]-
    120.055 6
    118.041 1
    7.7 C6H5N3 0.20
    TP3 [M+H]+ 120.055 6 9.1 C6H5N3 0.79
    TP4 [M+H]+ 178.061 1 12.0 C8H7N3O2 1.07
    TP5 [M+H]+ 192.076 8 11.3 C9H9N3O2 0.97
    TP6 [M-H]- 133.064 0 11.9 C7H7N3 1.14
    TP7 [M+HCOO]- 250.085 1 9.1 C10H11N3O2 0.64
    5-TTri TP8 [M+H]+
    [M-H]-
    134.071 3
    132.056 7
    10.3 C7H7N3 0.76
    TP9 [M+H]+
    [M-H]-
    134.071 3
    132.056 7
    11.9 C7H7N3 1.21
    TP10 [M-H]- 132.056 7 14.8 C7H7N3 1.95
    TP11 [M+H]+ 192.076 8 14.8 C9H9N3O2 1.62
    TP12 [M+H]+ 206.092 4 14.2 C10H11N3O2 1.55
    TP13 [M+CH3COO]- 264.099 0 11.9 C10H11N3O2 1.22
    TP14 [M+H]+
    [M-H]-
    222.087 3
    220.072 8
    14.5 C10H11N3O3 1.63
    TP15 [M-H]- 146.072 4 14.8 C8H9N3 1.68
    CBT TP16 [M+H]+
    [M-H]-
    154.016 7
    152.002 1
    11.6 C6H4ClN3 0.85
    TP17 [M-H]- 152.002 1 15.7 C6H4ClN3 1.83
    TP18 [M+H]+ 212.022 1 15.7 C8H6ClN3O2 1.71
    TP19 [M-H]- 166.017 7 15.7 C7H6ClN3 1.78
    TP20 [M+CH3COO]- 284.044 5 13.6 C9H8ClN3O2 1.32
    下载: 导出CSV
  • [1] CANCILLA D A, MARTINEZ J, VAN AGGELEN G C. Detection of aircraft deicing/antiicing fluid additives in a perched water monitoring well at an international airport[J]. Environmental Science & Technology, 1998, 32(23):3834-3835. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dde76b3dcecd9ce2ae9cd48fa8fb5d73
    [2] REEMTSMA T, MIEHE U, DUENNBIER U, et al. Polar pollutants in municipal wastewater and the water cycle:occurrence and removal of benzotriazoles[J]. Water Research, 2010, 44(2):596-604. doi: 10.1016/j.watres.2009.07.016
    [3] GATIDOU G, OURSOUZIDOU M, STEFANATOU A, et al. Removal mechanisms of benzotriazoles in duckweed Lemna minor wastewater treatment systems[J]. Science of the Total Environment, 2017, 596:12-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e740f45cd9ed489ea4d56888f2c7395d
    [4] LIANG X, WANG M, CHEN X, et al. Endocrine disrupting effects of benzotriazole in rare minnow (Gobiocypris rarus) in a sex-dependent manner[J]. Chemosphere, 2014, 112:154-162. doi: 10.1016/j.chemosphere.2014.03.106
    [5] LIANG X, MARTYNIUK C J, ZHA J, et al. Brain quantitative proteomic responses reveal new insight of benzotriazole neurotoxicity in female Chinese rare minnow (Gobiocypris rarus)[J]. Aquatic Toxicology, 2016, 181:67-75. doi: 10.1016/j.aquatox.2016.10.030
    [6] LIANG X, ZHA J, MARTYNIUK C J, et al. Histopatholo-gical and proteomic responses in male Chinese rare minnow (Gobiocypris rarus) indicate hepatotoxicity following benzotriazole exposure[J]. Environmental Pollution, 2017, 229:459-469. doi: 10.1016/j.envpol.2017.06.013
    [7] WANG Y, DAI C, ZHOU C, et al. Benzotriazole enhances cell invasive potency in endometrial carcinoma through CTBP1-mediated epithelial-mesenchymal transition[J]. Cellular Physiology and Biochemistry, 2017, 44(6):2357-2367. doi: 10.1159/000486123
    [8] LIU Y S, YING G G, SHAREEF A, et al. Occurrence and removal of benzotriazoles and ultraviolet filters in a municipal wastewater treatment plant[J]. Environmental Pollution, 2012, 165:225-232. doi: 10.1016/j.envpol.2011.10.009
    [9] MOLINS-DELGADO D, DÍAZ-CRUZ M S, BARCELÓ D. Removal of polar UV stabilizers in biological wastewater treatments and ecotoxicological implications[J]. Chemosphere, 2015, 119:S51-S57. doi: 10.1016/j.chemosphere.2014.02.084
    [10] MOLINS-DELGADO D, TÁVORA J, DÍAZ-CRUZ M S, et al. UV filters and benzotriazoles in urban aquatic ecosystems:the footprint of daily use products[J]. Science of the Total Environment, 2017, 601:975-986. http://cn.bing.com/academic/profile?id=4b5dd6bcfa6f554a3c33be3f62940ec0&encoded=0&v=paper_preview&mkt=zh-cn
    [11] KOLPIN D W, FURLONG E T, MEYER M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999—2000:a national reconnaissance[J]. Environmental Science & Technology, 2002, 36(6):1202-1211. doi: 10.1021-es011055j/
    [12] LOOS R, LOCORO G, COMERO S, et al. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water[J]. Water Research, 2010, 44(14):4115-4126. doi: 10.1016/j.watres.2010.05.032
    [13] LOOS R, CARVALHO R, ANTÓNIO D C, et al. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents[J]. Water Research, 2013, 47(17):6475-6487. doi: 10.1016/j.watres.2013.08.024
    [14] WOLSCHKE H, XIE Z, MÖLLER A, et al. Occurrence, distribution and fluxes of benzotriazoles along the German large river basins into the North Sea[J]. Water Research, 2011, 45(18):6259-6266. doi: 10.1016/j.watres.2011.09.028
    [15] HERZOG B, YUAN H, LEMMER H, et al. Effect of acclimation and nutrient supply on 5-tolyltriazole biodegradation with activated sludge communities[J]. Bioresource Technology, 2014, 163:381-385. doi: 10.1016/j.biortech.2014.04.097
    [16] HERZOG B, DÖTSCH A, LEMMER H, et al. Profiling 5-tolyltriazole biodegrading sludge communities using next-generation sequencing and denaturing gradient gel electrophoresis[J]. Systematic and Applied Microbiology, 2017, 40(8):508-515. doi: 10.1016/j.syapm.2017.09.007
    [17] HUNTSCHA S, HOFSTETTER T B, SCHYMANSKI E L, et al. Biotransformation of benzotriazoles:insights from transformation product identification and compound-specific isotope analysis[J]. Environmental Science & Technology, 2014, 48(8):4435-4443. http://cn.bing.com/academic/profile?id=45c60d24f24c29e97750306f67ecb1a3&encoded=0&v=paper_preview&mkt=zh-cn
    [18] XU B, XU B, SHAN S, et al. Co-metabolic degradation of iomeprol by a Pseudomonas sp. and its application in biological aerated filter systems[J]. Journal of Environmental Science and Health A, 2018, 53(4):310-316. doi: 10.1080/10934529.2017.1401385
    [19] 查君璞.睫状神经营养因子CNTF基因重组腺病毒的包装[D].石家庄: 河北医科大学, 2009. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&filename=2009139723.nh
    [20] LIU Y S, YING G G, SHAREEF A, et al. Biodegradation of three selected benzotriazoles under aerobic and anaerobic conditions[J]. Water Research, 2011, 45(16):5005-5014. doi: 10.1016/j.watres.2011.07.001
    [21] HERZOG B, HUBER B, LEMMER H, et al. Analysis and in situ characterization of activated sludge communities capable of benzotriazole biodegradation[J]. Environmental Sciences Europe, 2013, 25(1):31/1-8. http://cn.bing.com/academic/profile?id=4679332eb8d12398fa013ff490c8ad72&encoded=0&v=paper_preview&mkt=zh-cn
    [22] VAN TRUMP J I, SUN Y, COATES J D. Microbial interactions with humic substances[J]. Advances in Applied Microbiology, 2006, 60:55-96. doi: 10.1016/S0065-2164(06)60003-8
    [23] LLORCA M, BADIA-FABREGAT M, RODRÍGUEZ-MOZAZ S, et al. Fungal treatment for the removal of endocrine disrupting compounds from reverse osmosis concentrate:identification and monitoring of transformation products of benzotriazoles[J]. Chemosphere, 2017, 184:1054-1070. doi: 10.1016/j.chemosphere.2017.06.053
    [24] MAZIOTI A A, STASINAKIS A S, PSOMA A K, et al. Hybrid moving bed biofilm reactor for the biodegradation of benzotriazoles and hydroxy-benzothiazole in wastewater[J]. Journal of Hazardous Materials, 2017, 323:299-310. doi: 10.1016/j.jhazmat.2016.06.035
    [25] ALOTAIBI M D, PATTERSON B M, MCKINLEY A J, et al. Fate of benzotriazole and 5-methylbenzotriazole in recycled water recharged into an anaerobic aquifer:column studies[J]. Water Research, 2015, 70:184-195. doi: 10.1016/j.watres.2014.11.040
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1825
  • HTML全文浏览量:  1270
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-03
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回