留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氨基化纳米银的制备及抗菌性研究

蔺春蕾 李文卓 吕雅坤 杨启振 梅林

蔺春蕾, 李文卓, 吕雅坤, 杨启振, 梅林. 氨基化纳米银的制备及抗菌性研究[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 30-35. doi: 10.6054/j.jscnun.2020006
引用本文: 蔺春蕾, 李文卓, 吕雅坤, 杨启振, 梅林. 氨基化纳米银的制备及抗菌性研究[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 30-35. doi: 10.6054/j.jscnun.2020006
LIN Chunlei, LI Wenzhuo, LÜ Yakun, YANG Qizhen, MEI Lin. Preparation and Antibacterial Properties of Aminated Silver Nanoparticles[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(1): 30-35. doi: 10.6054/j.jscnun.2020006
Citation: LIN Chunlei, LI Wenzhuo, LÜ Yakun, YANG Qizhen, MEI Lin. Preparation and Antibacterial Properties of Aminated Silver Nanoparticles[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(1): 30-35. doi: 10.6054/j.jscnun.2020006

氨基化纳米银的制备及抗菌性研究

doi: 10.6054/j.jscnun.2020006
基金项目: 

国家自然科学基金项目 51703259

详细信息
    通讯作者:

    梅林,讲师,Email:lins79@sina.com

  • 中图分类号: O611.6

Preparation and Antibacterial Properties of Aminated Silver Nanoparticles

  • 摘要: 利用原位修饰法合成了表面氨基化纳米银,优化了纳米银的制备条件.通过紫外-可见光谱、傅里叶变换-红外光谱、X射线衍射、Zeta电势及透射电子显微镜等对其进行了分析和表征.对纳米银的抗菌性能进行了研究.结果表明:氨基化纳米银带有正电荷,能通过静电吸引作用结合表面带负电荷的细菌,使抗菌活性显著提高;氨基化的纳米银可有效抑制革兰氏阴性细菌和阳性细菌的生长;该材料可被应用于医学器件和细菌控制领域.
  • 图  1  不同NaBH4浓度制备的AgNPs-NH2溶胶照片、紫外-可见光谱和最小抑菌质量浓度

    Figure  1.  The photograph of AgNPs-NH2 solutions prepared with different NaBH4 concentrations, the UV-Vis spectra, and the minum inhibitory concentrations

    图  2  不同乙二胺体积分数制备的AgNPs-NH2溶胶照片、紫外-可见光谱和最小抑菌质量浓度

    Figure  2.  The photograph of AgNPs-NH2 solutions prepared with different volume fraction of ethylenediamine, the UV-Vis spectra, and the minum inhibitory concentrations

    图  3  AgNPs-NH2的表征

    Figure  3.  The characterization of AgNPs-NH2

    图  4  AgNPs-NH2对大肠杆菌和金黄色葡萄球菌生长的抑制

    Figure  4.  The growth inhibition of E.coli and S.aureus in the presence of AgNPs-NH2

    图  5  不同纳米材料对大肠杆菌和金黄色葡萄菌的抑菌圈

    Figure  5.  The inhibitory circles of different nanomaterials on E.coli and S.aureus

    图  6  AgNPs-NH2的抗菌动力学实验

    Figure  6.  The antibacterial kinetic experiment on AgNPs-NH2

  • [1] ZGURSKAYA H I, LÓPEZ C A, GNANAKARAN S. Permeability barrier of gram-negative cell Envelopes and approaches to bypass it[J]. ACS Infectious Diseases, 2015, 1(11):1509251535/1-22.
    [2] PANACEK A, KVITEK L, SMEKALOVA M, et al. Bacterial resistance to silver nanoparticles and how to overcome it[J]. Nature Nanotechnology, 2017, 13(1):65-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=92223e64293795ba6372c7f6acfa22b6
    [3] 梁国海, 周小明. DNA调控的银纳米簇的合成及应用进展[J].华南师范大学学报(自然科学版), 2016, 48(6):73-82. http://journal-n.scnu.edu.cn/article/id/3881

    LIANG G H, ZHOU X M. Review:synthesis and biological applications of DNA-protected silver nanoclusters[J]. Journal of South China Normal University(Nature Science Edition), 2016, 48(6):73-82. http://journal-n.scnu.edu.cn/article/id/3881
    [4] YUAN L, RICHARDSON C, HO M, et al. Stress responses of aquatic plants to silver nanoparticles[J]. Environmental Science & Technology, 2018, 52(5):58-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=24a475cc048c2a29806f2f6f91c46004
    [5] MILLER K P, WANG L, ENICEWICZ B C, et al. Inorganic nanoparticles engineered to attack bacteria[J]. Chemical Society Reviews, 2015, 44(21):787-807. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9ae47de7688be38026aa50128072346f
    [6] HE W, ZHANG F M, FAN Z N. Application of nano-silver antibacterial technology in clinical healthcare[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2010, 14(42):899-902. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdkf201042026
    [7] 张峰, 武娜娜, 徐思峻, 等.强吸附型纳米银溶液的研制及在抗菌医用敷料中的应用[J].纺织导报, 2012(5):92-94. http://d.old.wanfangdata.com.cn/Periodical/fzdb201205023

    ZHANG F, WU N N, XU S J, et al. Preparation of a nano-sliver solution with strong adsorption and its application to antimicrobial medical dressing[J]. China Textile Leader, 2012(5):92-94. http://d.old.wanfangdata.com.cn/Periodical/fzdb201205023
    [8] ZHANG Y, PENG H, HUANG W, et al. Hyperbranched poly(amidoamine) as the stabilizer and reductant to prepare colloid silver nanoparticles in situ and their antibacterial activity[J]. Journal of Physical Chemistry C, 2008, 112(7):233-236. doi: 10.1021-jp075436g/
    [9] 赵晨旭, 谢银红, 廖芝建, 等.聚多巴胺对材料表面功能化的研究及应用进展[J].高分子通报, 2015(12):28-37. http://d.old.wanfangdata.com.cn/Periodical/gfztb201512004

    ZHAO C X, XIE Y H, LIAO Z J, et al. The research and application progress of polydopamine on the material surface functionalization[J]. Chinese Polymer Bulletin, 2015(12):28-37. http://d.old.wanfangdata.com.cn/Periodical/gfztb201512004
    [10] LIU Y, ZHENG Z, ZARA J N, et al. The antimicrobial and osteoinductive properties of silver nanoparticle/poly(DL-lactic-co-glycolic acid)-coated stainless steel[J]. Biomaterials, 2012, 87(34):45-56.
    [11] CHEN S Y, XU S J, ZHANG F, et al. Preparation and property of hydroxyl-functionalized silver nanoparticles[J]. Textile Auxiliaries, 2016, 33(9)10-14.
    [12] FEI X, JIA M, DU X, et al. Green synthesis of silk fibroin-silver nanoparticle composites with effective antibacterial and biofilm-disrupting properties[J]. Biomacromolecules, 2013, 14(12):4483-4488. doi: 10.1021/bm4014149
    [13] MEI L, LU Z, ZHANG X, et al. Polymer-Ag nanocompo-sites with enhanced antimicrobial activity against bacterial infection[J]. ACS Applied Materials & Interfaces, 2014, 6(18):15813-15821.
    [14] SONG J, KANG H, LEE C, et al. Aqueous synthesis of silver nanoparticle embedded cationic polymer nanofibers and their antibacterial activity[J]. ACS Applied Materials & Interfaces, 2012, 4(1):460-465. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ea6d15aa8a1b677addf6b503269d24a6
    [15] ALARCON E I, UDEKWU K, SKOG M, et al. The biocompatibility and antibacterial properties of collagen- stabilized, photochemically prepared silver nanoparticles[J]. Biomaterials, 2012, 33(19):47-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a6adc54dc1250f46cea3a09a80467fd1
    [16] ZHOU C, W F, CHEN H, et al. Selective antimicrobial activities and action mechanism of micelles self-assembled by cationic oligomeric surfactants[J]. ACS Applied Materials & Interfaces, 2016, 8(6):4242-4249. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ca1bc052f509f4c5bf12b62f930208c4
    [17] LI S, PING Y, YAN J M, et al. Facile synthesis of AgAuPd/graphene with high performance for hydrogen generation from formic acid[J]. Journal of Materials Chemistry A, 2015, 3(28):14535-14538. doi: 10.1039/C5TA03111G
    [18] 郑品棋, 熊予莹, 黄志安, 等.化学沉淀法和溶胶-凝胶法制备纳米二氧化钛及其抑菌性的研究[J].华南师范大学学报(自然科学版), 2006(3):65-69. doi: 10.3969/j.issn.1000-5463.2006.03.012

    ZHENG P Q, XIONG Y Y, HUANG Z A, et al. Study on TiO2 nanoparticle prepared by chemistry precipitation method and sol-gel method and its antibacterial property[J]. Journal of South China Normal University(Natural Science Edition), 2006(3):65-69. doi: 10.3969/j.issn.1000-5463.2006.03.012
    [19] SHOCKMAN G D, BARREN J F. Structure, function, and assembly of cell walls of gram-positive bacteria[J]. Annual Reviews in Microbiology, 1983, 37(1):501-527. doi: 10.1146/annurev.mi.37.100183.002441
  • 加载中
图(6)
计量
  • 文章访问数:  1571
  • HTML全文浏览量:  716
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-12
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回