留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅波导纵向多模式分离与交叉的片上解决方案

朱凝 骆晖 张凯 刘琼 汪洋

朱凝, 骆晖, 张凯, 刘琼, 汪洋. 硅波导纵向多模式分离与交叉的片上解决方案[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 9-16. doi: 10.6054/j.jscnun.2020003
引用本文: 朱凝, 骆晖, 张凯, 刘琼, 汪洋. 硅波导纵向多模式分离与交叉的片上解决方案[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 9-16. doi: 10.6054/j.jscnun.2020003
ZHU Ning, LUO Hui, ZHANG Kai, LIU Qiong, WANG Yang. The On-Chip Solutions to Mode Separation and Crossing of Vertical Multi-Modes in Silicon Waveguide[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(1): 9-16. doi: 10.6054/j.jscnun.2020003
Citation: ZHU Ning, LUO Hui, ZHANG Kai, LIU Qiong, WANG Yang. The On-Chip Solutions to Mode Separation and Crossing of Vertical Multi-Modes in Silicon Waveguide[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(1): 9-16. doi: 10.6054/j.jscnun.2020003

硅波导纵向多模式分离与交叉的片上解决方案

doi: 10.6054/j.jscnun.2020003
基金项目: 

广东省科技计划项目 2017B020227009

广州市科技计划项目 201707010134

广州市科技计划项目 201604016095

中山市科技规划项目 2017A1008

详细信息
    通讯作者:

    朱凝,副研究员,Email:zhuning@scnu.edu.cn

  • 中图分类号: TN27

The On-Chip Solutions to Mode Separation and Crossing of Vertical Multi-Modes in Silicon Waveguide

  • 摘要: 为了解决硅纳米光子集成器件中纵向分布多模式波导的分离和交叉,提出了一种基于平面阶梯光栅和非对称定向耦合器的模式分离方案,并设计了一种带有曲面反射镜的器件,可实现多模式同时交叉.通过使用三维时域有限差分方法对器件进行仿真,结果表明:设计的平面阶梯光栅可同时分离不同的波长及模式(共9个通道),并具有低于-30 dB的串扰;曲面反射模式交叉器件可同时让3个模式进行交叉,且对所有模式均具有接近-40 dB的低串扰.
  • 图  1  在Si横向、纵向多模波导中前3个准TE模式在波长1 550 nm处的横向电场振幅分布

    注:2个多模波导的尺寸均为400 nm×1 500 nm(波导放置方向不同),其结构的轮廓用白色实线标记.

    Figure  1.  The electrical field amplitudes of the first three quasi-TE modes at the wavelength of 1 550 nm in the Si horizontal and vertical multi-mode waveguide

    图  2  应用于WDM的阶梯光栅解复用器的原理

    Figure  2.  The principle of the echelle grating demultiplexer for WDM applications

    图  3  前3个纵向TE模式的模拟输出光谱

    Figure  3.  The simulated output spectra of the first three vertical TE modes under investigation

    图  4  混合系统的示意图

    Figure  4.  The schematic layout of a hybrid system

    图  5  所有3×3通道的模拟输出光谱

    注:“w” “m”后的数字分别代表波长、模式的数目.

    Figure  5.  The simulated output spectra of all 3×3 channels

    图  6  ADC模式解复用器/转换器的横截面示意图

    Figure  6.  The schema of the cross-section of the proposed ADC mode demultiplexer/converter

    图  7  从脊形波导中的基模转换为条形波导中基模和一阶模时器件横截面中的主要电场轮廓图

    Figure  7.  The field profiles in the cross-section of the device when converting from the mode in the ridge waveguide to the fundamental mode and 1st mode in the channel waveguide

    图  8  椭圆形反射器的波导交叉结构示意图

    注:O1O2O3O4是4个椭圆形反射镜的焦点,而O是共同焦点.带有箭头的实线表示光束传播的方向.

    Figure  8.  The schematic diagram of a waveguide crossing device using elliptical reflectors

    图  9  器件的FDTD模拟以及输入/输出波导的场分布

    注:B图中输入和输出波导的宽度均为1.0 μm.

    Figure  9.  The field profiles of the proposed device simulated with FDTD and the input/output waveguides

    图  10  3种准TE模式的额外损耗和串扰与波长的关系

    注:e0e1e2表示基模、一阶模和二阶模的额外损耗; 而c0c1c2分别表示它们的串扰.

    Figure  10.  The excess losses and crosstalks of the first three quasi-TE modes as functions of the wavelength

  • [1] TKACH R W. Scaling optical communications for the next decade and beyond[J]. Bell Labs Technical Journal, 2010, 14(4):3-9. doi: 10.1002/bltj.20400
    [2] ESSIAMBRE R J, KRAMER G, WINZER P J, et al. Capacity limits of optical fiber network[J]. IEEE Journal of Lightwave Technolnology, 2010, 28:662-701. doi: 10.1109/JLT.2009.2039464
    [3] YE M, YU Y, ZOU J, et al. On-chip multiplexing conversion between wavelength division multiplexing-polarization division multiplexing and wavelength division multiplexing-mode division multiplexing[J]. Optics Letters, 2014, 4:758-761. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232191167/
    [4] CHEN K X, WANG S Y, CHEN S T, et al. Experimental demonstration of simultaneous mode and polarization-division multiplexing based on silicon densely packed waveguide array[J]. Optics Letters, 2015, 40:4655-4658. doi: 10.1364/OL.40.004655
    [5] SALSI M, KOEBELE C, SPERT D, et al. Mode-division multiplexing of 2×100 Gb/s channels using an LCOS-based spatial modulator[J]. IEEE Journal of Lightwave Technolnology, 2012, 30:618-623. doi: 10.1109/JLT.2011.2178394
    [6] DING Y, XU J, DA F, et al. On-chip two-mode division multiplexing using tapered directional coupler-basedmode multiplexer and demultiplexer[J]. Optics Express, 2013, 21:10376-10382. doi: 10.1364/OE.21.010376
    [7] BAI N, IP E, HUANG Y K, et al. Mode-division multiplexed transmission with inline few-mode fiber amplifier[J]. Optics Express, 2012, 20:2668-2680. doi: 10.1364/OE.20.002668
    [8] DRISCOLL J B, CHEN C P, GROTE R R, et al. A 60 Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel[J]. Optics Express, 2014, 22:18543-18555. doi: 10.1364/OE.22.018543
    [9] DAI D. Silicon-based Multi-channel Mode (de)multiplexer for on-chip optical Interconnects[C]//Integrated Photonics Research, Silicon and Nanophotonics. Piscataway: IEEE Photonics Society, 2014.
    [10] LUO L W, OPHIR N, CHEN C P, et al. WDM-compatible mode-division multiplexing on a silicon chip[J]. Nature Communications, 2014, 5:3069/1-7. doi: 10.1038/ncomms4069
    [11] DAI D, LI C L, WANG S P, et al. 10-channel mode (de)multiplexer with dual polarizations[J]. Laser & Photonics Reviews, 2018, 12(1):1700109/1-12.
    [12] DAI D. Multimode optical waveguide enabling microbends with low inter-mode crosstalk for mode-multiplexed optical interconnects[J]. Optics Express, 2014, 22:27524-27534. doi: 10.1364/OE.22.027524
    [13] DRISCOLL J B, CHEN C P, GROTE R R, et al. A 60-Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel[J]. Optics Express, 2014, 22:18543-18555. doi: 10.1364/OE.22.018543
    [14] CHEN W, WANG P, YANG J. Mode multi/demultiplexer based on cascaded asymmetric Y-junctions[J]. Optics Express, 2013, 21:25113-25119. doi: 10.1364/OE.21.025113
    [15] WANG J, CHEN P, CHEN S, et al. Improved 8-channel silicon mode demultiplexer with grating polarizers[J]. Optics Express, 2014, 22:12799-12807. doi: 10.1364/OE.22.012799
    [16] LUO L, OPHIR N, CHEN C P, et al. WDM-compatible mode-division multiplexing on a silicon chip[J]. Nature Communications, 2014, 5:3069/1-7. doi: 10.1038/ncomms4069
    [17] DING Y, XU J, ROS F D, et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer[J]. Optics Express, 2013, 22:10376-10382.
    [18] YANG Y D, LI Y, HUANG Y Z, et al. Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators[J]. Optics Express, 2014, 22:22172-22183. doi: 10.1364/OE.22.022172
    [19] YE M, YU Y, ZOU J, et al. On-chip multiplexing conversion between wavelength division multiplexing-polarization division multiplexing and wavelength division multiplexing-mode division multiplexing[J]. Optics Letters, 2014, 39:758-761. doi: 10.1364/OL.39.000758
    [20] UEMATSU T, ISHIZAKA Y, KAWAGUCHI Y, et al. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission[J]. IEEE Journal of Lightwave Technolnology, 2012, 30:2421-2426. doi: 10.1109/JLT.2012.2199961
    [21] CASTRO J M, GERAGHTY D F. Demonstration of mode conversion using anti-symmetric Bragg gratings[J]. Optics Express, 2005, 13:4180-4184. doi: 10.1364/OPEX.13.004180
    [22] BREMER K, LOCHMANN S, ROTH B. Grating assisted optical waveguide coupler to excite individual modes of a multi-mode waveguide[J]. Optics Communications, 2015, 356:560-564. doi: 10.1016/j.optcom.2015.08.050
    [23] CHEN J, YANG Y, ZHU N. Echelle grating based mode demultiplexer for vertical mode-division multiplexing[J]. Optics Express, 2016, 24:24509-24516. doi: 10.1364/OE.24.024509
    [24] ZHU N, SONG J, WOSINSKI L, et al. Experimental demonstration of a cross-order echelle grating triplexer based on an amorphous silicon nanowire platform[J]. Optics Letters, 2009, 34:383-385. doi: 10.1364/OL.34.000383
    [25] ZHU N, MEI T. Focusing and demultiplexing of an in-plane hybrid plasmonic mode based on the planar concave grating[J]. Optics Communications, 2013, 298:120-124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=287608de302f674c54ba03c3c042b5c4
    [26] BROUCKAERT J, BOGAERTS W, DUMON P, et al. Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform[J]. IEEE Journal of Lightwave Technolnology, 2007, 25:1269-1275. doi: 10.1109/JLT.2007.893025
    [27] RANDEL S, RYF R, SIERRA A, et al. 6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization[J]. Optics Express, 2011, 19:16697-16707. doi: 10.1364/OE.19.016697
    [28] LEI T, ZHANG M, LI Y R, et al. Massive individual orbi-tal angular momentum channels for multiplexing enabled by Dammann grating[J]. Light: Science & Applications, 2015, 4:e257/1-7.
    [29] CHEN K, WANG S, CHEN S, et al. Experimental demonstration of simultaneous mode and polarization-division multiplexing based on silicon densely packed waveguide array[J]. Optics Letters, 2015, 40:4655-4658. doi: 10.1364/OL.40.004655
    [30] CHEN C P, DRISCOLL J B, GROTE R R, et al. Mode and polarization multiplexing in a Si photonic chip at 40Gb/s aggregate data bandwidth[J]. IEEE Photonics Technology Letters, 2015, 27:22-25. doi: 10.1109/LPT.2014.2360126
    [31] ZHANG Y, HE Y, ZHU Q, et al. On-chip silicon photonic 2×2 mode- and polarization-selective switch with low inter-modal crosstalk[J]. Photonics Research, 2017, 5:521-526. doi: 10.1364/PRJ.5.000521
    [32] WANG S, FENG X, GAO S, et al. On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode division multiplexing systems[J]. Optics Letters, 2017, 42:2802-2805. doi: 10.1364/OL.42.002802
    [33] CHEN Z, ZHU Y, RUAN X, et al. Bridged coupler and oval mode converter based silicon mode division (de)multiplexer and terabit WDM-MDM system demonstration[J]. IEEE Journal of Lightwave Technolnology, 2018, 36:2757-2766. doi: 10.1109/JLT.2018.2818793
    [34] GARCIA-RODRIGUEZ D, CORRAL J, GRIOL A, et al. Dimensional variation tolerant mode converter/multiplexer fabricated in SOI technology for two-mode transmission at 1550 nm[J]. Optics Letters, 2017, 42:1221-1224. doi: 10.1364/OL.42.001221
    [35] XU H, SHI Y. Ultra-compact polarization-independent directional couplers utilizing a subwavelength structure[J]. Optics Letters, 2017, 42:5202-5205. doi: 10.1364/OL.42.005202
    [36] ZHAO W K, CHEN K X, WU J Y, et al. Horizontal directional coupler formed with waveguides of different heights for mode-division multiplexing[J]. IEEE Photonics Journal, 2017, 9(5):1-9.
    [37] DING W, TANG D, LIU Y, et al. Compact and low crosstalk waveguide crossing using impedance matched metamaterial[J]. Applied Physics Letters, 2010, 96(11):1855-1857. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0215130365/
    [38] CHEN H, POON A W. Low-loss multimode-interference-based crossings for silicon wire waveguides[J]. IEEE Photonics Technology Letters, 2006, 18(21):2260-2262. doi: 10.1109/LPT.2006.884726
    [39] KIM S H, CONG G, KAWASHIMA H, et al. Tilted MMI crossings based on silicon wire waveguide[J]. Optics Express, 2014, 22:2545-3552. doi: 10.1364/OE.22.002545
    [40] OTA M, FUKUHARA M, SUMIMURA A, et al. Dielectric-loaded surface plasmon polariton crossing waveguides using multimode interference[J]. Optics Letters, 2015, 40:2269-2272. doi: 10.1364/OL.40.002269
    [41] SANCHIS P, VILLALBA P, CUESTA F, et al. Highly efficient crossing structure for silicon-on-insulator wave-guides[J]. Optics Letters, 2009, 34:2760-2762. doi: 10.1364/OL.34.002760
    [42] LI X, XU H, XIAO X, et al. Demonstration of a highly efficient multimode interference based silicon waveguide crossing[J]. Optics Communications, 2014, 312:148-152. doi: 10.1016/j.optcom.2013.08.021
    [43] LI Y, XU C, ZENG C, et al. Hybrid plasmonic waveguide crossing based on the multimode interference effect[J]. Optics Communications, 2015, 335:86-89. doi: 10.1016/j.optcom.2014.09.016
    [44] ZHANG Y, HOSSEINI A, XU X, et al. Ultralow-loss silicon waveguide crossing using Bloch modes in index-engineered cascaded multimode-interference couplers[J]. Optics Letters, 2013, 38(18):3608-3611. doi: 10.1364/OL.38.003608
    [45] XU Y, WANG J, XIAO J, et al. Design of a compact silicon-based slot-waveguide crossing composed of an orthogonal strip multimode waveguide and four logarithmical mode converters[J]. Journal of Physics D:Applied Phy-sics, 2013, 46:455102/1-9. doi: 10.1088/0022-3727/46/45/455102
    [46] GUOFANG F, REGIS O, BING H, et al. 8 x 8 wavelength router of optical network on chip[J]. Optics Express, 2017, 25:23677-23683. doi: 10.1364/OE.25.023677
    [47] YANG L, ZHOU T, JIA H, et al. General architectures for on-chip optical space and mode switching[J]. Optica, 2018, 5(2):180-187.
    [48] XU H, SHI Y. Dual-mode waveguide crossing utilizing taper-assisted multimode-interference couplers[J]. Optics Letters, 2016, 41:5381-5384. doi: 10.1364/OL.41.005381
    [49] XU H, SHI Y. Metamaterial-based Maxwell's fisheye lens for multimode waveguide crossing[J]. Laser Photonics Reviews, 2018, 12:1800094/1-6. doi: 10.1002/lpor.201800094
    [50] HOU Z, LI X, HUANG Y, et al. Physics of elliptical reflectors at large reflection and divergence angles Ⅰ:their design for nano-photonic integrated circuits and application to low-loss low-crosstalk waveguide crossing[J]. Optics Communications, 2013, 287:96-105. doi: 10.1016/j.optcom.2012.08.078
    [51] ZHANG K, LIU Q, ZHU N. Analysis of a waveguide crossing structure suitable for vertical multi-modes based on planar curved reflectors[J]. Applied Optics, 2019, 58:1299-1304. doi: 10.1364/AO.58.001299
  • 加载中
图(10)
计量
  • 文章访问数:  2113
  • HTML全文浏览量:  749
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-17
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回