留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非极性纳米线压电电子和压电光电子学效应的研究进展

王幸福 曹瑾

王幸福, 曹瑾. 非极性纳米线压电电子和压电光电子学效应的研究进展[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 1-8. doi: 10.6054/j.jscnun.2020002
引用本文: 王幸福, 曹瑾. 非极性纳米线压电电子和压电光电子学效应的研究进展[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 1-8. doi: 10.6054/j.jscnun.2020002
WANG Xingfu, CAO Jin. Progress in the Research on the Piezotronic and Piezo-Phototronic Effects of Non-Polar Nanowires[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(1): 1-8. doi: 10.6054/j.jscnun.2020002
Citation: WANG Xingfu, CAO Jin. Progress in the Research on the Piezotronic and Piezo-Phototronic Effects of Non-Polar Nanowires[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(1): 1-8. doi: 10.6054/j.jscnun.2020002

非极性纳米线压电电子和压电光电子学效应的研究进展

doi: 10.6054/j.jscnun.2020002
基金项目: 

国家自然科学基金项目 11804103

详细信息
    通讯作者:

    王幸福,研究员,Email:xfwang@scnu.edu.cn

  • 中图分类号: O47

Progress in the Research on the Piezotronic and Piezo-Phototronic Effects of Non-Polar Nanowires

  • 摘要: 压电极化和半导体特性之间的耦合因具有独特的物理性质而引起了人们的关注,并由此兴起了一些新的研究领域(如压电电子学和压电光电子学).文章回顾了压电效应和压电光电子学效应对金属/半导体(M/S)和p-n结的影响,详细介绍了c轴和a轴压电电子和压电光电子学研究的基本进展和应用探索. c轴纳米结构中的压电效应是界面效应,它利用在纳米结构的局部M/S接触处或同质/异质结处产生的压电极化来控制载流子跨界面传输,并通过光感应载流子进行相应的光电过程.在非极性a轴纳米线中,外部应变感应的压电电荷沿整个极性表面分布,方向垂直于纳米线.压电半导体的电荷载流子传输过程在整个纳米结构体内受到压电效应的调节.
  • 图  1  纤锌矿晶体中的压电势

    Figure  1.  The piezo-potential in a wurtzite crystal

    图  2  M/S界面上的压电效应和p-n结界面上的压电光电子效应[23]

    Figure  2.  The piezoelectricity effect on M/S interface and the piezoelectricity photoelectric effect on p-n junction interface[23]

    图  3  基于a轴纳/微米线的压电体的原理[29]

    Figure  3.  The mechanisms of the piezotronics based on a-axis nano/microwires[29]

    图  4  基于a轴纳/微米线的压电体的物理机制

    注:B图显示在初始阶段施加-0.5%的压缩应变; C图显示在平衡时处于-0.5%的压缩应变压电势分布的有限元分析结果; 底部面板为载具运动的示意图; A~C图已经过文献[46]许可转载.

    Figure  4.  The physical mechanisms of the piezotronics based on a-axis nano/microwires

    图  5  不同条件下的能带图[48]

    (A)无应变条件(B)在黑暗中沿c轴的压缩应变(C)紫外线照射下

    Figure  5.  The energy band diagram under different conditions[48]

    图  6  温度依赖压电效应的工作机理[48]

    Figure  6.  The working mechanisms of temperature dependence of the piezo-phototronic effect[48]

  • [1] GERHARDMULTHAUPT R. Origin of the piezoelectricity in polyvinylidene fluoride[J]. NTZ Archiv, 1985, 7:133-143.
    [2] SESSLER G M. Piezoelectricity in polyvinylidene fluoride[J]. The Journal of the Acoustical Society of America, 1981, 70:1596-1608. doi: 10.1121/1.387225
    [3] YAMADA T, UEDA T, KITAYAMA T. Piezoelectricity of a high-content lead zirconate titanate polymer composite[J]. Journal of Applied Physics, 1982, 53:4328-4332. doi: 10.1063/1.331211
    [4] TZOU H S, TSENG C I. Distributed piezoelectric sensor actuator design for dynamic measurement control of distributed parameter-systems-a piezoelectric finite-element approach[J]. Journal of Sound and Vibration, 1990, 138:17-34. doi: 10.1016/0022-460X(90)90701-Z
    [5] GIURGIUTIU V. Tuned lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring[J]. Journal of Intelligent Material Systems and Structures, 2005, 16:291-305. doi: 10.1177/1045389X05050106
    [6] IKUTA K, KAWAHARA A, YAMAZUMI S. Miniature cybernetic actuators using piezoelectric device[C]//MEMS 1991-IEEE International Conference on Micro Electro Mechanical Systems. Piscataway: IEEE, 1991: 131-136.
    [7] CRAWLEY E F, DELUIS J. Use of piezoelectric actuators as elements of intelligent structures[J]. AIAA Journal, 1987, 25:1373-1385. doi: 10.2514/3.9792
    [8] GROSS S J, TADIGADAPA S, JACKSON T N, et al. Lead- zirconate-titanate-based piezoelectric micromachined swit-ch[J]. Applied Physics Letters, 2003, 83:174-176. doi: 10.1063/1.1589192
    [9] CUEFF M, DEFAY E, REY P, et al. A fully packaged piezoelectric switch with low-voltage actuation and electrostatic hold[C]//2010 IEEE 23rd International Confe-rence on Mircro Electro Mechanical Systems. Piscataway: Proceedings of the IEEE, 2010: 212-215.
    [10] RENAUD M, KARAKAYA K, STERKEN T, et al. Fabrication, modelling and characterization of MEMS piezoelectric vibration harvesters[J]. Sensors Actuators A:Physical, 2008, 145:380-386.
    [11] FANG H B, LIU J Q, XU Z Y, et al. Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting[J]. Microelectronics Journal, 2006, 37:1280-1284. doi: 10.1016/j.mejo.2006.07.023
    [12] OTTMAN G K, HOFMANN H F, BHATT A C, et al. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply[J]. IEEE Transactions on Power Electronics, 2002, 17:669-676. doi: 10.1109/TPEL.2002.802194
    [13] TSENG K K, WANG L. Smart piezoelectric transducers for in situ health monitoring of concrete[J]. Smart Materials and Structures, 2004, 13:1017-1024. doi: 10.1088/0964-1726/13/5/006
    [14] WANG Z L. Progress in piezotronics and piezo-phototro-nics[J]. Advanced Materials, 2012, 24:4632-4646. doi: 10.1002/adma.201104365
    [15] WANG Z L. Piezopotential gated nanowire devices:pezotronics and piezo-phototronics[J]. Nano Today, 2010, 5:540-552. doi: 10.1016/j.nantod.2010.10.008
    [16] WANG Z L. From nanogenerators to piezotronics-a decade-long study of ZnO nanostructures[J]. Materials Research Society Bulletin, 2012, 37:814-827. doi: 10.1557/mrs.2012.186
    [17] YAMABI S, IMAI H. Growth conditions for wurtzite zinc oxide films in aqueous solutions[J]. Journal of Materials Chemistry C, 2002, 12:3773-3778. doi: 10.1039/b205384e
    [18] WU W Z, WEI Y G, WANG Z L. Strain-gated piezotronic logic nanodevices[J]. Advanced Materials, 2010, 22:4711-4715. doi: 10.1002/adma.201001925
    [19] YU R M, WU W Z, DING Y, et al. GaN nanobelt-based strain-gated piezotronic logic devices and computation[J]. ACS Nano, 2013, 7:6403-6409. doi: 10.1021/nn4026788
    [20] NIU S M, HU Y F, WEN X N, et al. Enhanced performance of flexible ZnO nanowire based room-temperature oxygen sensors by piezotronic effect[J]. Advanced Materials, 2013, 25:3701-3706. doi: 10.1002/adma.201301262
    [21] YU R M, PAN C F, WANG Z L. High performance of ZnO nanowire protein sensors enhanced by the piezotronic effect[J]. Energy & Environmental Science, 2013, 6:494-499. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=56f58a15b5e24ceda06d37e0e8f88676
    [22] YANG Q, WANG W H, XU S, et al. Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect[J]. Nano Letters, 2011, 11:4012-4017. doi: 10.1021/nl202619d
    [23] PAN C F, CHEN M X, YU R M, et al. Progress in piezo-phototronic-effect-enhanced light-emitting diodes and pressure imaging[J]. Advanced Materials, 2016, 28:1535-1552. doi: 10.1002/adma.201503500
    [24] PAN C F, NIU S M, DING Y, et al. Enhanced Cu2S/CdS coaxial nanowire solar cells by piezo-phototronic effect[J]. Nano Lettersers, 2012, 12:3302-3307. doi: 10.1021/nl3014082
    [25] WANG Z L. Towards self-powered nanosystems: from nanogenerators to nanopiezotronics[J]. Advanced Functional Materials, 2008, 18:3553-3567. doi: 10.1002/adfm.200800541
    [26] WANG Z L, SONG J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312:242-246. doi: 10.1126/science.1124005
    [27] GAO Z Y, ZHOU J, GU Y D, et al. Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor[J]. Journal of Applied Physics, 2009, 106:113707/1-6. doi: 10.1063/1.3264719
    [28] WANG Z L. Piezotronics and piezo-phototronics[M]. Berlin: Springer Berlin Heidelberg, 2012.
    [29] WANG Z L, Nanopiezotronics[J]. Advanced Materials, 2007, 19:889-892. doi: 10.1002/adma.200602918
    [30] SHI J, STARR M B, WANG X D. Band structure engineering at heterojunction interfaces via the piezotronic effect[J]. Advanced Materials, 2012, 24:4683-4691. doi: 10.1002/adma.201104386
    [31] WANG Z L, WU W Z. Piezotronics and piezo-phototro-nics: fundamentals and applications[J]. National Science Review, 2014, 1(1):62-90. doi: 10.1093/nsr/nwt002
    [32] WU W Z, WANG Z L. Piezotronic nanowire-based resistive switches as programmable electromechanical memories[J]. Nano Letters, 2011, 11:2779-2785. doi: 10.1021/nl201074a
    [33] PRADEL K C, WU W Z, ZHOU Y S, et al. Piezotronic effect in solution-grown p-type ZnO nanowires and films[J]. Nano Letters, 2013, 13:2647-2653. doi: 10.1021/nl400792w
    [34] PRADEL K C, WU W Z, DING Y, et al. Solution-derived ZnO homojunction nanowire films on wearable substrates for energy conversion and self-powered gesture recognition[J]. Nano Letters, 2014, 14:6897-6905. doi: 10.1021/nl5029182
    [35] LU S N, QI J J, GU Y S, et al. Influence of the carrier concentration on the piezotronic effect in a ZnO/Au Schottky junction[J]. Nanoscale, 2015, 7:4461-4467. doi: 10.1039/C4NR07619B
    [36] XUE F, ZHANG L M, FENG X L, et al. Influence of external electric field on piezotronic effect in ZnO nanowires[J]. Nano Research, 2015, 8:2390-2399. doi: 10.1007/s12274-015-0749-3
    [37] LEE K Y, BAE J, KIM S, et al. Depletion width engineering via surface modification for high performance semiconducting piezoelectric nanogenerators[J]. Nano Energy, 2014, 8:165-173. doi: 10.1016/j.nanoen.2014.06.008
    [38] WANG C H, LIAO W S, KU N J, et al. Effects of free carriers on piezoelectric nanogenerators and piezotronic devices made of GaN nanowire arrays[J]. Small, 2014, 10:4718-4725. doi: 10.1002/smll.201400768
    [39] SZE S M. Physics of semiconductor devices[M]. New Jersey: John Wiley & Sons, 2006.
    [40] HE J H, HSIN C L, LIU J, et al. Piezoelectric gated diode of a single ZnO nanowire[J]. Advanced Materials, 2007, 19:781-785. doi: 10.1002/adma.200601908
    [41] WANG Z L. The new field of nanopiezotronics[J]. Mater Today, 2007, 10:20-28.
    [42] WANG Z L. Preface to the special section on piezotronics[J]. Advanced Materials, 2012, 24:4630-4631. doi: 10.1002/adma.201202888
    [43] ZHANG Y, WANG Z L. Theory of piezo-phototronics for light-emitting diodes[J]. Advanced Materials, 2012, 24: 4712-4718. doi: 10.1002/adma.201104263
    [44] YU R M, NIU S M, PAN C F, et al. Piezotronic effect enhanced performance of Schottky-contacted optical, gas, chemical and biological nanosensors[J]. Nano Energy, 2015, 14:312-339. doi: 10.1016/j.nanoen.2014.11.037
    [45] WU W Z, WANG Z L. Piezotronics and piezo-phototro-nics for adaptive electronics and optoelectronics[J]. Nature Reviews Materials, 2016(1):1603/1-17.
    [46] YU R M, WANG X F, PENG W B, et al. Piezotronic effect in strain-gated transistor of a-axis GaN nanobelt[J]. ACS Nano, 2015, 9:9822-9829. doi: 10.1021/acsnano.5b02817
    [47] GAO Y, WANG Z L. Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire[J]. Nano Letters, 2009, 9:1103-1110. doi: 10.1021/nl803547f
    [48] WANG X F, YU R M, PENG W B, et al. Temperature dependence of the piezotronic and piezophototronic effects in a-axis GaN nanobelts[J]. Advanced Materials, 2015, 27:8067-8074. doi: 10.1002/adma.201504534
    [49] SLACK G A, SCHOWALTER L J, MORELLI D, et al. Some effects of oxygen impurities on AlN and GaN[J]. Journal of Crystal Growth, 2002, 246:287-298. doi: 10.1016/S0022-0248(02)01753-0
    [50] MOLNAR R J, LEI T, MOUSTAKAS T D. Electron-transport mechanism in gallium nitride[J]. Applied Physics Letters, 1993, 62:72-74. doi: 10.1063/1.108823
    [51] MOORE W J, FREITAS J A, BRAGA G C B, et al. Identification of Si and O donors in hydride-vapor-phase epitaxial GaN[J]. Applied Physics Letters, 2001, 79:2570-2572. doi: 10.1063/1.1411985
  • 加载中
图(6)
计量
  • 文章访问数:  1805
  • HTML全文浏览量:  930
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-22
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回