留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于信息干预的SIRS传染病模型稳定性分析

李小妮 张启敏

李小妮, 张启敏. 基于信息干预的SIRS传染病模型稳定性分析[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 98-103. doi: 10.6054/j.jscnun.2019090
引用本文: 李小妮, 张启敏. 基于信息干预的SIRS传染病模型稳定性分析[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 98-103. doi: 10.6054/j.jscnun.2019090
LI Xiaoni, ZHANG Qimin. Stability Analysis of an SIRS Epidemic Model with Information Intervention[J]. Journal of South China normal University (Natural Science Edition), 2019, 51(5): 98-103. doi: 10.6054/j.jscnun.2019090
Citation: LI Xiaoni, ZHANG Qimin. Stability Analysis of an SIRS Epidemic Model with Information Intervention[J]. Journal of South China normal University (Natural Science Edition), 2019, 51(5): 98-103. doi: 10.6054/j.jscnun.2019090

基于信息干预的SIRS传染病模型稳定性分析

doi: 10.6054/j.jscnun.2019090
基金项目: 

国家自然科学基金项目 11661064

详细信息
    通讯作者:

    张启敏, 教授, Email:zhangqimin64@sina.com

  • 中图分类号: O175.1

Stability Analysis of an SIRS Epidemic Model with Information Intervention

  • 摘要: 建立了一类基于信息干预和疫苗接种的SIRS传染病模型, 研究了该模型的全局渐近稳定性, 给出了疾病持久和灭绝的基本再生数0.研究结果表明:当0 < 1时, 该模型存在全局渐近稳定的无病平衡点; 当0>1时, 该模型存在全局渐近稳定的地方病平衡点.数值算例验证了理论分析结果.
  • 图  1  模型(2)中疾病的灭绝性分析

    Figure  1.  The extinction analysis of disease for model (2)

    图  2  模型(2)中疾病的持久性分析

    Figure  2.  The persistence analysis of disease for model (2)

  • [1] BERRHAZI B, FATINI M, LAHROUZ A, et al. A stochastic SIRS epidemic model with a general awareness-induced incidence[J]. Physica A:Statistical Mechanics and its Applications, 2018, 512:968-980. doi: 10.1016/j.physa.2018.08.150
    [2] LUH D L, LIU C C, LUO Y R, et al. Economic cost and burden of dengue during epidemics and non-epidemic years in Taiwan[J]. Journal of Infection and Public Health, 2018, 11:215-223. doi: 10.1016/j.jiph.2017.07.021
    [3] DAS P, MUKANDAVIRE Z, CHIYAKA C, et al. Bifurcation and chaos in S-I-S epidemic model[J]. Differential Equations and Dynamical Systems, 2009, 17(4):393-417. doi: 10.1007/s12591-009-0028-4
    [4] 吴敏, 翁佩萱.具有阶段结构的多时滞SIR扩散模型的稳定性[J].华南师范大学学报(自然科学版), 2013, 45(2):20-23. http://journal-n.scnu.edu.cn/CN/abstract/abstract3064.shtml

    WU M, WENG P X. Stability of a stage-structured diffusive SIR model with delays[J]. Journal of South China Normal University(Natural Science Edition), 2013, 45(2):20-23. http://journal-n.scnu.edu.cn/CN/abstract/abstract3064.shtml
    [5] CAO B Q, SHAN M J, ZHANG Q M, et al. A stochastic SIS epidemic model with vaccination[J]. Physica A:Statistical Mechanics and its Applications, 2017, 486:127-143. doi: 10.1016/j.physa.2017.05.083
    [6] XIAO Y N, TANG S Y, WU J H. Media impact switching surface during an infectious disease outbreak[J]. Scientific Report, 2015, 5:7838/1-9. doi: 10.1038/srep07838
    [7] WANG X W, PENG H J, SHI B Y, et al. Optimal vaccination strategy of a constrained time-varying SEIR epidemic model[J]. Communication in Nonlinear Science and Numerical Simulation, 2019, 67:37-48. doi: 10.1016/j.cnsns.2018.07.003
    [8] LAHROUZ A, OMARI L, KIOUACH D, et al. Complete global stability for an SIRS epidemic model with genera-lized non-linear incidence and vaccination[J]. Applied Mathematics and Computation, 2012, 218:6519-6525. doi: 10.1016/j.amc.2011.12.024
    [9] 乔杰, 刘贤宁.考虑疫苗时效及潜伏期的乙肝传染病模型分析[J].西南大学学报(自然科学版), 2018, 40(5):101-106. http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb201805016

    QIAO J, LIU X L. Analysis of an HBV transmission model with vaccinal effectiveness and latency[J]. Journal of Southwest University (Natural Science Edition), 2018, 40(5):101-106. http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb201805016
    [10] BAO K B, ZHANG Q M. Stationary distribution and extinction of a stochastic SIRS epidemic model with information intervention[J]. Advances in Difference Equations, 2017, 352:1-19. http://d.old.wanfangdata.com.cn/Periodical/yingysx201803027
    [11] 赵晓艳, 明艳, 李学志.一类考虑媒体报道影响的传染病模型分析[J].数学的实践与认识, 2018, 48(10):314-320. http://d.old.wanfangdata.com.cn/Periodical/sxdsjyrs201810046

    ZHAO X Y, MING Y, LI X Z. Analysis of a kind of epidemic model with the impact of media coverage[J]. Mathematics in Practice and Theory, 2018, 48(10):314-320. http://d.old.wanfangdata.com.cn/Periodical/sxdsjyrs201810046
    [12] KUMAR A, SRIVASTAVE P K, TAKEUCHI Y. Modeling the role of information and limited optimal treatment on disease prevalence[J]. Journal of Theoretical Biology, 2017, 414:103-119. doi: 10.1016/j.jtbi.2016.11.016
    [13] VAN DEN DRIESSCHE P, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathema-tical Biosciences, 2002, 180(1):29-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6bafe6f5a607891dd89d1790f875d387
    [14] LAWRENCE P. Differential equations and dynamical systems[M]. New York:Springer, 1991.
    [15] CASTILLO-CHAVEZ C, FENG Z L, HUANG W Z. On the computation of 0 and its role in global stability[J]. Institute for Mathematics and its Applications, 2002, 125:229-250. https://mathscinet.ams.org/mathscinet-getitem?mr=1938888
  • 加载中
图(2)
计量
  • 文章访问数:  1807
  • HTML全文浏览量:  876
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-21
  • 刊出日期:  2019-10-25

目录

    /

    返回文章
    返回