留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁碳内电解耦合蕹菜(Ipomoea aquatica)对黑臭污水脱氮效果的研究

陈胜男 廖子聪 胡勇有

陈胜男, 廖子聪, 胡勇有. 铁碳内电解耦合蕹菜(Ipomoea aquatica)对黑臭污水脱氮效果的研究[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 38-48. doi: 10.6054/j.jscnun.2019083
引用本文: 陈胜男, 廖子聪, 胡勇有. 铁碳内电解耦合蕹菜(Ipomoea aquatica)对黑臭污水脱氮效果的研究[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 38-48. doi: 10.6054/j.jscnun.2019083
CHEN Shengnan, LIAO Zicong, HU Yongyou. Effects of Nitrogen Removal in Black and Odorous Water Using Iron-Carbon Interior Electrolysis Combined with Ipomoea Aquatica[J]. Journal of South China normal University (Natural Science Edition), 2019, 51(5): 38-48. doi: 10.6054/j.jscnun.2019083
Citation: CHEN Shengnan, LIAO Zicong, HU Yongyou. Effects of Nitrogen Removal in Black and Odorous Water Using Iron-Carbon Interior Electrolysis Combined with Ipomoea Aquatica[J]. Journal of South China normal University (Natural Science Edition), 2019, 51(5): 38-48. doi: 10.6054/j.jscnun.2019083

铁碳内电解耦合蕹菜(Ipomoea aquatica)对黑臭污水脱氮效果的研究

doi: 10.6054/j.jscnun.2019083
基金项目: 

广东省科技计划项目 2015B020235009

详细信息
    通讯作者:

    胡勇有,教授,Email:ppyyhu@scut.edu.cn

  • 中图分类号: X52

Effects of Nitrogen Removal in Black and Odorous Water Using Iron-Carbon Interior Electrolysis Combined with Ipomoea Aquatica

  • 摘要: 构建了铁碳内电解耦合蕹菜技术体系,用于原位净化河道黑臭污水,采用单因素模拟实验,探究耦合体系植株密度、铁碳填料用量和陶粒用量对黑臭污水脱氮效果的影响规律.结果表明,在植株密度为80株/m2、铁碳填料用量为18 g/L和陶粒用量为52 g/L的适宜组合下,处理22 d后,TN和NH4+-N的去除率分别为74.1%和99.6%,其质量浓度分别稳定在(13.65±1.24) mg/L和(0.18±0.04) mg/L.水体微生物丰度和多样性有了显著提高,主要优势细菌门是Proteobacteria、Firmicutes和Bacteroidetes,主要优势细菌属为PseudomonasEscherichia-ShigellaDiaphorobacter,微生物群落演化更适宜脱氮.耦合体系通过协同作用净化水质,其作用过程包括:铁碳内电解产生质子[H]和Fe2+提供电子促进自养反硝化、蕹菜根际泌氧促进微生物硝化、陶粒生物膜与根际微生物之间的硝化反硝化作用、陶粒吸附氮.该研究为采用铁碳内电解耦合挺水植物净化河道黑臭污水提供了依据.
  • 图  1  铁碳内电解耦合蕹菜模块的示意图

    Figure  1.  The schematic diagram of iron-carbon interior electrolysis combined with Ipomoea aquatica

    图  2  实验装置示意图

    Figure  2.  The schematic diagram of the experimental device

    图  3  不同植株密度条件下ρ(DO)、pH随时间的变化

    Figure  3.  The variations of DO concentration and pH with plan-ting density and sampling time

    图  4  不同植株密度条件下ρ(NH4+-N)、ρ(NO2--N)、ρ(NO3--N)及ρ(TN)随时间的变化

    Figure  4.  The variations of NH4+-N、NO2--N、NO3--N and TN concentrations with planting density and sampling time

    图  5  不同铁碳填料用量条件下ρ(DO)、pH随时间的变化

    Figure  5.  The variations of DO concentration and pH with dosage of iron-carbon and sampling time

    图  6  不同铁碳填料用量条件下ρ(NH4+-N)、ρ(NO2--N)、ρ(NO3--N)及ρ(TN)随时间的变化

    Figure  6.  The variations of NH4+-N、NO2--N、NO3--N and TN concentrations with dosage of iron-carbon and sampling time

    图  7  不同陶粒用量条件下ρ(DO)、pH随时间的变化

    Figure  7.  The variations of DO concentration and pH with dosage of ceramsite nd sampling time

    图  8  不同陶粒用量条件下ρ(NH4+-N)、ρ(NO2--N)、ρ(NO3--N)及ρ(TN)随时间的变化

    Figure  8.  The variations of NH4+-N、NO2--N、NO3--N and TN concentrations with dosage of ceramsite and sampling time

    图  9  不同组合条件下ρ(TN)随时间的变化

    Figure  9.  The change of TN with combinations and sampling time

    图  10  处理前及处理22 d后对照组和实验组中占主导地位细菌门和属的相对丰度

    Figure  10.  The relative abundance of the top 20 bacterial phyla and bacterial genus before and after 22 d treatment

    图  11  微生物群落相似性分析

    注:主成分PC1、PC2的占比分别为66.35%、33.65%.

    Figure  11.  The similarity analysis of the microbial community

    图  12  协同作用机理示意图

    Figure  12.  The schematic diagram of the synergistic mechanism

    表  1  黑臭污水样品的水质

    Table  1.   The quality of black and odorous water

    水质指标 范围 平均值
    ρ(COD)/(mg·L-1) 95.04~122.03 112.18±12.17
    ρ(TP)/(mg·L-1) 2.46~4.25 3.65±0.84
    ρ(NH4+-N)/(mg·L-1) 23.37~44.73 37.61±10.07
    ρ(TN)/(mg·L-1) 30.05~52.75 45.18±10.70
    ρ(DO)/(mg·L-1) 0.48~0.50 0.49±0.01
    pH 6.95~7.14 7.08±0.09
    ORP/mV -166~-260 -229.00±44.48
    下载: 导出CSV

    表  2  水样微生物群落的多样性

    Table  2.   The alpha diversity of microbial community

    水样 OTUs Ace Chao Simpson Shannon 覆盖度/%
    原始水样 541 692 645 0.198 4 3.33 99.85
    22 d后对照组 665 679 694 0.038 6 4.53 99.93
    22 d后实验组 966 974 1 032 0.010 9 5.96 99.98
    注:OTUs表示分类操作单元个数;Ace和Chao指数衡量物种丰度即物种数量的多少;Simpson和Shannon指数用于衡量物种多样性,受样品群落中物种丰度和物种均匀度(Community evenness)的影响;覆盖度是样本的覆盖率.
    下载: 导出CSV
  • [1] SUN L P, LIU Y, JIN H. Nitrogen removal from polluted river by enhanced floating bed grown canna[J]. Ecological Engineering, 2009, 35(1):135-140. doi: 10.1016/j.ecoleng.2008.09.016
    [2] 聂玉华.微曝气强化生态浮床对污水中氮元素的去除效果研究[D].成都: 西南交通大学, 2015.

    NIE Y H. Study on the decontamination performance of nitrogen in polluted water by micro-aeration enhanced ecological floating bed[D]. Chengdu: Southwest Jiaotong University, 2015.
    [3] CAO W P, ZHANG Y Q. Removal of nitrogen (N) from hypereutrophic waters by ecological floating beds (EFBs) with various substrates[J]. Ecological Engineering, 2014, 62(1):148-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8aac52e57aa4af49276928fa4e7ac0c2
    [4] WANG W H, WANG Y, LI Z, et al. Effect of a strengthened ecological floating bed on the purification of urban landscape water supplied with reclaimed water[J]. Science of the Total Environment, 2018, 622/623:1630-1639. doi: 10.1016/j.scitotenv.2017.10.035
    [5] 王梦月, 马鲁铭.催化铁强化低碳废水生物反硝化过程的探讨[J].环境科学, 2014, 35(7):2633-2638. http://d.old.wanfangdata.com.cn/Periodical/hjkx201407028

    WANG M Y, MA L M. Investigation of enhanced low carbon wastewater denitrification by catalytic iron[J]. Environmental Science, 2014, 35(7):2633-2638 http://d.old.wanfangdata.com.cn/Periodical/hjkx201407028
    [6] WANG Z, CHEN Z, WANG H W, et al. Enhancing biolo-gical nutrient removal from real domestic wastewater by using iron shavings[J]. Applied Mechanics & Materials, 2012, 164:517-520. https://www.researchgate.net/publication/258576329_Enhancing_Biological_Nutrient_Removal_from_Real_Domestic_Wastewater_by_Using_Iron_Shavings
    [7] SONG X S, WANG S Y, WANG Y H, et al. Addition of Fe2+ increase nitrate removal in vertical subsurface flow constructed wetlands[J]. Ecological Engineering, 2016, 91:487-494. doi: 10.1016/j.ecoleng.2016.03.013
    [8] HU M H, AO Y S, YANG X E, et al. Treating eutrophic water for nutrient reduction using an aquatic macrophyte (Ipomoea aquatica Forsskal) in a deep flow technique system[J]. Agricultural Water Management, 2008, 95(5): 607-615. doi: 10.1016/j.agwat.2008.01.001
    [9] 住房城乡建设部, 环境保护部.城市黑臭水体整治工作指南[S/OL]. http://www.mohurd.gov.cn/wjfb/201509/t20150911_224828.html.
    [10] 国家环保局本书编委会.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002.
    [11] IAMCHATURAPATR J, SU W Y, RHEE J S. Nutrient removals by 21 aquatic plants for vertical free surface-flow (VFS) constructed wetland[J]. Ecological Engineering, 2007, 29(3):287-293. doi: 10.1016/j.ecoleng.2006.09.010
    [12] WANG C Y, SAMPLE D J. Assessment of the nutrient removal effectiveness of floating treatment wetlands applied to urban retention ponds[J]. Journal of Environmental Management, 2014, 137(4):23-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=88247e6ce0e33457b4edb8b0d697cd79
    [13] LI Y Q, LI Z H, JIANG Y H, et al. Study on the changes of physiological indexes of water spinach in eutrophication water[J]. Agricultural Science & Technology, 2010(11/12):73-76. http://cn.bing.com/academic/profile?id=c0967c3cd33157763d3bff2dbd7930df&encoded=0&v=paper_preview&mkt=zh-cn
    [14] 鞠峰, 胡勇有.铁屑内电解技术的强化方式及改进措施研究进展[J].环境科学学报, 2011, 31(12):2585-2594. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201112001

    JU F, HU Y Y. Advance in enhanced patterns and improvement measures of iron inner electrolysis[J]. Acta Scientiae Circumstantiae, 2011, 31(12):2585-2594. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201112001
    [15] 汪大翚, 雷乐成.水处理新技术及工程设计[M].北京:化学工业出版社, 2001.
    [16] STOTTMEISTER U, WIESSNER A, KUSCHK P, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment[J]. Biotechnology Advances, 2003, 22(1):93-117. doi: 10.1016-j.biotechadv.2003.08.010/
    [17] WHITE S A, COUSINS M M. Floating treatment wetland aided remediation of nitrogen and phosphorus from simulated stormwater runoff[J]. Ecological Engineering, 2013, 61(8):207-215. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ec9cb9363ca6fb158926f5d565efcd70
    [18] 朱静平, 程凯. 3种水培植物根系分泌的有机酸对氮循环菌的影响[J].环境工程学报, 2011(9):2139-2143. http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb201109042

    ZHU J P, CHENG K. Effect of organic acids exuded from hydroponic plants roots on nitrogen cycling bacteria[J]. Chinese Journal of Environmental Engineering, 2011, 5(9):2139-2143. http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb201109042
    [19] DENG S, LI D, YANG X, et al. Biological denitrification process based on the Fe(0)-carbon micro-electrolysis for simultaneous ammonia and nitrate removal from low organic carbon water under a microaerobic condition[J]. Bioresource Technology, 2016, 219:677-686. http://cn.bing.com/academic/profile?id=4e6e76318ce5ab918fcb3d71c3ff8dfa&encoded=0&v=paper_preview&mkt=zh-cn
    [20] DENG S H, LI D S, YANG X, et al. Advanced low carbon-to-nitrogen ratio wastewater treatment by electrochemical and biological coupling process[J]. Environmental Science and Pollution Research, 2016, 23(6):5361-5373. doi: 10.1007/s11356-015-5711-0
    [21] SAEED T, SUN G Z. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media[J]. Journal of Environmental Management, 2012, 112:429-448. doi: 10.1016/j.jenvman.2012.08.011
    [22] ZHOU Q, ZHU H, BAÑUELOS G, et al. Impacts of vegetation and temperature on the treatment of domestic sewage in constructed wetlands incorporated with Ferric-Carbon micro-electrolysis material[J]. International Journal of Phytoremediation, 2017, 19(10):915-924. doi: 10.1080/15226514.2017.1303811
    [23] LI X N, SONG H L, LI W, et al. An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water[J]. Ecological Engineering, 2010, 36(4):382-390. doi: 10.1016/j.ecoleng.2009.11.004
    [24] MAI Y Z, LAI Z N, LI X H, et al. Structural and functional shifts of bacterioplanktonic communities associated with spatiotemporal gradients in river outlets of the subtropical Pearl River Estuary, South China[J]. Marine Pollution Bulletin, 2018, 136:309-321. doi: 10.1016/j.marpolbul.2018.09.013
    [25] 孙井梅, 刘晓朵, 汤茵琪, 等.微生物-生物促生剂协同修复河道底泥:促生剂投量对修复效果的影响[J].中国环境科学, 2019, 39(1):351-357. doi: 10.3969/j.issn.1000-6923.2019.01.041

    SUN J M, LIU X D, TANG Y Q, et al. Microorganism and biostimulant collaboratively remediate river sediment:influence of biostimulant quantity on repair performance[J]. China Environmental Science, 2019, 39(1):351-357. doi: 10.3969/j.issn.1000-6923.2019.01.041
    [26] CHOUARI R, PASLIER D L, DAEGELEN P, et al. Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester[J]. Environmental Microbiology, 2010, 7(8):1104-1115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1462-2920.2005.00795.x
    [27] WANG W F, CAO L X, TAN H G, et al. Nitrogen removal from synthetic wastewater using single and mixed culture systems of denitrifying fungi, bacteria, and actinobacteria[J]. Applied Microbiology and Biotechnology, 2016, 100(22):9699-9707. doi: 10.1007/s00253-016-7800-5
    [28] 张承铭.辽河保护区典型湿地净化特性及微生物群落结构研究[D].西安: 长安大学, 2017.

    ZHANG C M. Effect of carbon source and salinity on nitrogen removal of an aerobic denitrifier[D]. Xi'an: Chang'an University, 2017.
    [29] 操家顺, 李欲如, 陈娟.水蕹菜对重污染河道净化及克藻功能[J].水资源保护, 2006, 22(2):36-38. doi: 10.3969/j.issn.1004-6933.2006.02.010

    CAO J S, LI Y R, CHEN J. Purification of seriously polluted river by Ipomoea aquatica and its allelopathic effect on algae[J]. Water Resources Protection, 2006, 22(2):36-38. doi: 10.3969/j.issn.1004-6933.2006.02.010
    [30] 廖绍安, 黄捷畅, 王安利, 等.碳源和盐度对好氧反硝化细菌脱氮特性的影响[J].华南师范大学学报(自然科学版), 2016, 48(6):30-36. http://d.old.wanfangdata.com.cn/Periodical/hnsfdx201606005

    LIAO S A, HUANG J C, WANG A L, et al. Effect of carbon source and salinity on nitrogen removal of an aerobic denitrifier[J]. Journal of South China Normal University(Natural Science Edition), 2016, 48(6):30-36. http://d.old.wanfangdata.com.cn/Periodical/hnsfdx201606005
    [31] 邓时海.催化Fe-C内电解与生物耦合深度脱除污水厂尾水中氮的机制与技术[D].北京: 北京交通大学, 2017.

    DENG S H. Mechanism and technology study on the advanced nitrogen removal of tail water from WWTP by the coupling process between catalyzed Fe-C micro-electro-lysis and biological process[D]. Beijing: Beijing Jiaotong University, 2017.
    [32] 孔强.富营养化水体生态修复中高效微生物的研究[D].济南: 山东师范大学, 2010.

    KONG Q. Study on efficient microorganisms in eutrophic water ecological restoration[D]. Jinan: Shandong Normal University, 2010.
    [33] CHAKRAVARTHY S S, PANDE S, KAPOOR A, et al. Comparison of denitrification between Paracoccus sp. and Diaphorobacter sp.[J]. Applied Biochemistry and Biotechnology, 2011, 165(1):260-269. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=87ab8ddc18f1e4cbeb9a6ea25b4c88a3
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  1890
  • HTML全文浏览量:  826
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-15
  • 刊出日期:  2019-10-25

目录

    /

    返回文章
    返回