留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物炭负载金属硒化物复合材料的储锂性能

苏炽权 汝强 石正禄 赵灵智

苏炽权, 汝强, 石正禄, 赵灵智. 生物炭负载金属硒化物复合材料的储锂性能[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 32-37. doi: 10.6054/j.jscnun.2019082
引用本文: 苏炽权, 汝强, 石正禄, 赵灵智. 生物炭负载金属硒化物复合材料的储锂性能[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 32-37. doi: 10.6054/j.jscnun.2019082
SU Chiquan, RU Qiang, SHI Zhenglu, ZHAO Lingzhi. The Lithium Storage Performance of Biochar-Loaded Metal Selenide Composite Material[J]. Journal of South China normal University (Natural Science Edition), 2019, 51(5): 32-37. doi: 10.6054/j.jscnun.2019082
Citation: SU Chiquan, RU Qiang, SHI Zhenglu, ZHAO Lingzhi. The Lithium Storage Performance of Biochar-Loaded Metal Selenide Composite Material[J]. Journal of South China normal University (Natural Science Edition), 2019, 51(5): 32-37. doi: 10.6054/j.jscnun.2019082

生物炭负载金属硒化物复合材料的储锂性能

doi: 10.6054/j.jscnun.2019082
基金项目: 

广东省科技计划项目 2017A040405047

广东省科技计划项目 2017B090901027

广东省科技计划项目 2016A050503040

广东省科技计划项目 2016B010114002

广东省自然科学基金项目 2017B030311013

广州市科技计划项目 201607010322

广州市科技计划项目 201607010274

广州市科技计划项目 201804010169

广东省普通高校特色创新类项目 2018KTSCX047

广东省大学生科技创新能力培养专项资金项目 pdjha0126

详细信息
    通讯作者:

    汝强, 副教授, Email:rq7702@yeah.net

  • 中图分类号: TM912.9

The Lithium Storage Performance of Biochar-Loaded Metal Selenide Composite Material

  • 摘要: 通过高温对膨化大米进行炭化处理得到米炭(Puffed Rice Carbon, PRC),以米炭(作为生物炭)和商业Sn、Se粉为原材料,采用高能球磨法在氩气保护气氛中球磨48 h,制备了SnSe/PRC锂离子电池负极材料.用X射线衍射、扫描电子显微镜(含能谱分析)、恒流充放电测试、循环伏安法和电化学阻抗谱等技术对材料进行结构、形貌表征和电化学性能测试.结果表明:在高能机械力作用下,米炭与Sn、Se相互挤压形成合金/碳复合镶嵌结构,提升了体系的导电性能,缓冲了材料的体积膨胀效应,改善了纯合金相的结构稳定性.在电流密度500 mA/g、电压范围0.01~3.00 V条件下进行充放电循环,SnSe/PRC的首次放电比容量较高(704.00 mAh/g),经50次充放电循环后比容量稳定保持在608.90 mAh/g.该材料还具有良好的倍率性能,在较大电流密度下容量仍保持稳定,当恢复至初始电流密度时,容量能恢复到原有水平.利用环境友好且易制得的生物炭材料能有效地改善了SnSe的储锂性能,对金属硒化物在锂离子电池方面的应用有很好的参考价值.
  • 图  1  SnSe和SnSe/PRC的XRD谱

    Figure  1.  The XRD patterns of SnSe and SnSe/PRC

    图  2  膨化大米炭化前后的照片以及SnSe/PRC的SEM图

    Figure  2.  The images of puffed rice before and after carbonization and the scanning electron microscope image of SnSe/PRC

    图  3  SnSe/PRC的能谱元素分布像

    Figure  3.  The elemental mapping of SnSe/PRC

    图  4  SnSe/PRC的前3次循环伏安曲线

    Figure  4.  The first three cyclic voltammetry curves of SnSe/PRC

    图  5  SnSe和SnSe/PRC的前3次充放电曲线

    Figure  5.  The first three charge-discharge curves of SnSe and SnSe/PRC

    图  6  SnSe与SnSe/PRC的循环充放电曲线

    Figure  6.  The cyclic charge-discharge curves of SnSe and SnSe/PRC

    图  7  SnSe与SnSe/PRC的倍率性能

    Figure  7.  The rate capabilitiy of SnSe and SnSe/PRC

    图  8  SnSe与SnSe/PRC的电化学阻抗谱

    Figure  8.  The electrochemical impedance spectroscopy of SnSe and SnSe/PRC

  • [1] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414:359-367. doi: 10.1038/35104644
    [2] BRUCE P G, SCROSATI B, TARASCON J M. Nanomaterials for rechargeable lithium batteries[J]. Angewandte Chemie International Edition, 2008, 47(16):2930-2946. doi: 10.1002/anie.200702505
    [3] 李亚杰, 周宇, 侯贤华, 等.多边形结构富锂锰基正极材料的可控制备及性能[J].华南师范大学学报(自然科学版), 2017, 49(6):34-38. http://d.old.wanfangdata.com.cn/Periodical/hnsfdx201706007

    LI Y J, ZHOU Y, HOU X H, et al. Controllable preparation and performance of Li-rich Mn-based cathode materials with polygon structure[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(6):34-38. http://d.old.wanfangdata.com.cn/Periodical/hnsfdx201706007
    [4] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery:a perspective[J]. Journal of the American Chemical Society, 2013, 135(4):1167-1176. doi: 10.1021/ja3091438
    [5] XUE M Z, YAO J, CHENG S C, et al. Lithium electrochemistry of a novel SnSe thin-film anode[J]. Journal of The Electrochemical Society, 2006, 153(2):270-274. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b5c8aa2a5384bc210609efe9ae1450ae
    [6] WANG X, LIU B, XIANG Q, et al. Spray-painted binder-free SnSe electrodes for high-performance energy-storage devices[J]. ChemSusChem, 2014, 7(1):308-313. doi: 10.1002/cssc.201300241
    [7] LEE D H, PARK C M. Tin selenides with layered crystal structures for Li-ion batte-ries:interesting phase change mechanisms and outstanding electrochemical behaviors[J]. ACS Applied Materials & Interfaces, 2017, 9(18):15439-15448. https://www.ncbi.nlm.nih.gov/pubmed/28402105
    [8] YUAN H, JIN Y, LAN J, et al. In situ synthesized SnSe nanorods in a SnOx@CNF membrane toward high-performance freestanding and binder-free lithium-ion batteries[J]. Inorganic Chemistry Frontiers, 2018, 5(4):932-938. doi: 10.1039/C7QI00762K
    [9] CHEN K, WANG X, WANG G, et al. A new generation of high performance anode materials with semiconductor heterojunction structure of SnSe/SnO2@Gr in lithium-ion batteries[J]. Chemical Engineering Journal, 2018, 347:552-562. doi: 10.1016/j.cej.2018.04.125
    [10] ZHANG L, LU L, ZHANG D, et al. Dual-buffered SnSe@ CNFs as negative electrode with outstanding lithium storage performance[J]. Electrochimica Acta, 2016, 209:423-429. doi: 10.1016/j.electacta.2016.05.106
    [11] WANG D, ZHANG K, ZHU Y, et al. A novel strategy to prepare graphene oxide-wrapped nanocrystals composite for high-performance lithium storage[J]. Materials Letters, 2016, 175:32-35. doi: 10.1016/j.matlet.2016.03.135
    [12] ZHANG Z, ZHAO X, LI J. SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries[J]. Electrochimica Acta, 2015, 176:1296-1301. doi: 10.1016/j.electacta.2015.07.140
    [13] YOON Y H, KIM D S, KIM M J, et al. Investigation of electrochemical performance on carbon supported tin-selenium bimetallic anodes in lithium-ion batteries[J]. Electrochimica Acta, 2018, 266:193-201. doi: 10.1016/j.electacta.2017.12.188
    [14] GURUNG A, NADERI R, VAAGENSMITH B, et al. Tin selenide-multi-walled carbon nanotubes hybrid anodes for high performance lithium-ion batteries[J]. Electrochimica Acta, 2016, 211:720-725. doi: 10.1016/j.electacta.2016.06.065
    [15] 倪江锋, 周恒辉, 陈继涛, 等.锂离子电池中固体电解质界面膜(SEI)研究进展[J].化学进展, 2004, 16(3):335-342. doi: 10.3321/j.issn:1005-281X.2004.03.003

    JIANGFENG N, HENGHUI Z, JITAO C, et al. Progress in solid electrolyte interface in lithium ion batteries[J]. Progress in Chemistry, 2004, 16(3):335-342. doi: 10.3321/j.issn:1005-281X.2004.03.003
    [16] KWON H T, PARK C M. Electrochemical characteristics of ZnSe and its nanostructured composite for rechargeable Li-ion batteries[J]. Journal of Power Sources, 2014, 251:319-324. doi: 10.1016/j.jpowsour.2013.11.033
    [17] NARAYANAN S R, SHEN D H, SURAMPUDI S, et al. Electrochemical impedance spectroscopy of lithium-titanium disulfide rechargeable cells[J]. Journal of the Electrochemical Society, 1993, 140(7):1854-1861. doi: 10.1149/1.2220729
    [18] 陈晓秋, 汝强, 王朕, 等.高容量钠离子电池SnSbCo/rGO负极材料[J].华南师范大学学报(自然科学版), 2018, 50(2):34-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnsfdx201802007

    CHEN X Q, RU Q, WANG Z, et al. SnSbCo/rGO anodes of high capacity sodium ion batteries[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(2):34-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnsfdx201802007
  • 加载中
图(8)
计量
  • 文章访问数:  1446
  • HTML全文浏览量:  988
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-21
  • 刊出日期:  2019-10-25

目录

    /

    返回文章
    返回