留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

g-C3N4@Ag的光催化性能及原位热动力学研究

覃方红 万婷 王素素 邱江源 肖碧源 贺子君 黄在银

覃方红, 万婷, 王素素, 邱江源, 肖碧源, 贺子君, 黄在银. g-C3N4@Ag的光催化性能及原位热动力学研究[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 25-31. doi: 10.6054/j.jscnun.2019081
引用本文: 覃方红, 万婷, 王素素, 邱江源, 肖碧源, 贺子君, 黄在银. g-C3N4@Ag的光催化性能及原位热动力学研究[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 25-31. doi: 10.6054/j.jscnun.2019081
QIN Fanghong, WAN Ting, WANG Susu, QIU Jiangyuan, XIAO Biyuan, HE Zijun, HUANG Zaiyin. Photocatalytic Properties and in-situ Thermokinetics of g-C3N4@Ag[J]. Journal of South China normal University (Natural Science Edition), 2019, 51(5): 25-31. doi: 10.6054/j.jscnun.2019081
Citation: QIN Fanghong, WAN Ting, WANG Susu, QIU Jiangyuan, XIAO Biyuan, HE Zijun, HUANG Zaiyin. Photocatalytic Properties and in-situ Thermokinetics of g-C3N4@Ag[J]. Journal of South China normal University (Natural Science Edition), 2019, 51(5): 25-31. doi: 10.6054/j.jscnun.2019081

g-C3N4@Ag的光催化性能及原位热动力学研究

doi: 10.6054/j.jscnun.2019081
基金项目: 

国家自然科学基金项目 21873022

国家自然科学基金项目 21573048

广西研究生教育创新计划项目 gxun-chxzs2018062

详细信息
    通讯作者:

    黄在银,教授,Email:huangzaiyin@163.com

  • 中图分类号: O642

Photocatalytic Properties and in-situ Thermokinetics of g-C3N4@Ag

  • 摘要: 采用硼氢化钠作还原剂将吸附于石墨相氮化碳(g-C3N4)表面的硝酸银还原成纳米银(Ag)颗粒,通过调控在氮化碳上原位沉积时硝酸银的用量,制备了不同Ag负载量的g-C3N4@Ag复合催化剂.使用场发射扫描电子显微镜(FE-SEM)观察、X射线粉末衍射(XRD)分析、N2吸附-脱附等温曲线(BET)分析、X射线光电子能谱(XPS)分析等方法对制备的材料进行了表征.由紫外-可见吸收光谱(UV-Vis)分析和光微量热-荧光光谱联用分析研究了复合催化剂对罗丹明B降解的原位热动力学性质.结果表明:当Ag纳米颗粒的质量分数为4%时其降解罗丹明B的反应速率常数为1.55×10-2 min-1,其催化性能是未修饰g-C3N4的1.9倍;在光密度为10、20、32 W/m2条件下,反应均在120 s左右达到表观吸热最大值,随后放热,最终恒定放热速率依次为7.293×10-8、1.316×10-7和1.162×10-7 mJ/s.文中的研究结果对研究光催化原位过程的热力学、动力学及光谱性质具有重要意义和潜在应用价值.
  • 图  1  g-C3N4和g-C3N4@Ag的场发射扫描电镜(FE-SEM)图

    Figure  1.  The FE-SEM images of g-C3N4 and g-C3N4@Ag-4%

    图  2  g-C3N4和g-C3N4@Ag-4%的XRD谱图和N2吸附-脱附等温曲线

    Figure  2.  The XRD pattern and the N2 absorbtion-desorbtion isotherms of g-C3N4 and g-C3N4@Ag-4%

    图  3  g-C3N4和g-C3N4@Ag-4%的XPS全谱图以及g-C3N4@Ag-4%中的C 1s、Ag 3d和N 1s的XPS谱

    Figure  3.  The XPS survey pattern of g-C3N4 and g-C3N4@Ag-4% and the XPS spectra of g-C3N4@Ag-4% nanocomposites: C 1s, Ag 3d and N 1s

    图  4  光催化降解罗丹明B的降解曲线和一级反应动力学拟合结果

    Figure  4.  The photocatalytic degradation curve and the fitting results of first order reaction kinetics of photocatalysis under visible-light irradiation

    图  5  不同光密度下罗丹明B光降解的原位热电势-时间、热量-时间曲线

    Figure  5.  The heat potential change and heat change of photocatalytic degradation of RhB under different light densities

    图  6  不同光密度下降解RhB的热反应速率-时间图和原位荧光降解率-时间曲线

    Figure  6.  The heat flow curves and plots of C/C0 with time detected with in-situ fluorescence spectra of photocatalytic degradation of RhB under different light densities

    表  1  光反应1 h罗丹明B的光催化性能

    Table  1.   The photocatalytic performance of Rhodamine B when light reaction is 1 h

    样品 (C:C0)/% ln(C0:C) 反应速率k/min-1 R2
    g-C3N4 48.49 0.663 3 8.15×10-3 0.981 4
    g-C3N4@Ag-1% 48.56 0.664 7 8.97×10-3 0.997 4
    g-C3N4@Ag-2% 66.42 1.091 3 1.23×10-2 0.993 0
    g-C3N4@Ag-4% 72.17 1.279 0 1.55×10-2 0.993 8
    g-C3N4@Ag-8% 48.92 0.671 8 5.52×10-3 0.982 2
    g-C3N4@Ag-12% 46.01 0.616 4 3.89×10-3 0.994 4
    下载: 导出CSV

    表  2  不同光密度下罗丹明B的光催化原位热动力学数据

    Table  2.   The in-situ thermodynamic data of Rhodamine B under different light densities

    光密度/(W·m-2) k/min-1a R2 (C1 h:C0)/%b 恒定放热速率r/(mJ·s-1)
    10 0.069 0.987 41.48 7.293×10-8
    20 0.133 0.988 42.25 1.316×10-7
    32 0.151 0.946 44.45 1.162×10-7
    注:a.k为反应2 min时的反应速率常数; b.C1 h为反应1 h时RhB的质量浓度.
    下载: 导出CSV
  • [1] 袁梦, 万霞, 铁绍龙.纳米NiO光催化剂性质对降解亚甲基蓝染料的影响[J].华南师范大学学报(自然科学版), 2013, 45(1):62-67 http://journal-n.scnu.edu.cn/CN/abstract/abstract2940.shtml

    YUAN M, WAN X, TIE S L. Effects ofcatalyst characters on the photocatalytic activities of NiO nanoparticles in the degradation of methylene blue[J]. Journal of South China Normal University(Natural Science Edition), 2013, 45(1):62-67. http://journal-n.scnu.edu.cn/CN/abstract/abstract2940.shtml
    [2] JIŘÍ H, YEE S S, GÜNTER G. Surface plasmon resonance sensors: review[J]. Analytical & Bioanalytical Chemistry, 1999, 377(3):528-39. http://d.old.wanfangdata.com.cn/Periodical/gdxxhxxb201704010
    [3] 李星星, 范高超, 马昭, 等.可见光驱动Ag@AgCl催化反应的原位微量热研究[J].中国科学(化学), 2014, 44(10):1576-1584. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cb201410010

    LI X X, FAN G C, MA Z, et al. In situ microcalorimetric investigation on the photocatalysis with efficient visible-light-driven Ag@AgCl[J]. Scientia Sinica(Chimica), 2014, 44(10):1576-1584. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cb201410010
    [4] 廖高祖, 张静雯, 邓达义, 等.可见光下氮化碳活化过硫酸钠降解罗丹明B[J].华南师范大学学报(自然科学版), 2017, 49(3):44-48. http://journal-n.scnu.edu.cn/CN/abstract/abstract3733.shtml

    LIAO G Z, ZHANG J W, DENG D Y, et al. Degradation of Rhodamine B bycarbon nitride activated sodium Persulfa Te under visible light irradiation[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(3):44-48. http://journal-n.scnu.edu.cn/CN/abstract/abstract3733.shtml
    [5] JIANG J, ZHU L, ZOU J, et al. Micro/nano-structured graphitic carbon nitride-Ag nanoparticle hybrids as surface-enhanced Raman scattering substrates with much improved long-term stability[J]. Carbon, 2015, 87:193-205. doi: 10.1016/j.carbon.2015.02.025
    [6] YU J, WANG K, XIAO W, et al. Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4-Pt nanocomposite photocatalysts[J]. Physical Chemistry Chemical Physics, 2014, 16(23):11492-11501. doi: 10.1039/c4cp00133h
    [7] PATNAIK S, MARTHA S, MADRAS G, et al. The effect of sulfate pre-treatment to improve the deposition of Au-nanoparticles in a gold-modified sulfated g-C3N4 plasmonic photocatalyst towards visible light induced water reduction reaction[J]. Phy-sical Chemistry Chemical Phy-sics, 2016, 18(41):28502-28514. doi: 10.1039/C6CP04262G
    [8] SAMANTA S, MARTHA S, PARIDA K. Facile Synthesis of Au/g-C3N4 nanocomposites:an inorganic/organic hybrid plasmonic photocatalyst with enhanced hydrogen gas evolution under visible-light irradiation[J]. Chemcat-chem, 2014, 6(5):1453-1462. doi: 10.1002/cctc.201300949/full
    [9] YANG Y, GUO Y, LIU F, et al. Preparation and enhanced visible-light photocatalytic activity of silver deposited graphitic carbon nitride plasmonic photocatalyst[J]. Applied Catalysis B:Environmental, 2013, 142:828-837.
    [10] BAI S, WANG X, HU C, et al. Two-dimensional g-C3N4:an ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis[J]. Chemical Communications, 2014, 50(46):6094-6097. doi: 10.1039/C4CC00745J
    [11] 李旭, 李强国, 蒋建宏.一种精密恒温环境微量燃烧-溶解-反应多用量热计的设计及应用[J].物理化学学报, 2017, 33(6), 1114-1122. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201706010

    LI X, LI Q G, JIANG J H. Design andapplication of a precise Isoperibol combustion-solution-reaction microcalorimeter[J]. Acta Physico-Chimica Sinica, 2017, 33(6), 1114-1122. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201706010
    [12] 邱江源, 马玉洁, 万婷, 等.单微乳体系中钼酸锰纳米材料的原位生长热动力学研究[J].华南师范大学学报(自然科学版), 2017, 49(6):39-45. http://journal-n.scnu.edu.cn/CN/abstract/abstract4202.shtml

    QIU J Y, MA Y J, WAN T, et al. Thermokinetics of the in-situ growth of MnMoO4 nanomaterials in single microemulsion system[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(6):39-45. http://journal-n.scnu.edu.cn/CN/abstract/abstract4202.shtml
    [13] CARSTEA E M, BRIDGEMAN J, BAKER A, et al. Fluorescence spectroscopy for waste water monitoring:a review[J]. Water Research, 2016, 95:205-219. doi: 10.1016/j.watres.2016.03.021
    [14] LI X, HUANG Z, LIU Z, et al. In situ photocalorimetry:an alternative approach to study photocatalysis by tracing heat changes and kinetics[J]. Applied Catalysis B:Environmental, 2016, 181:79-87. doi: 10.1016/j.apcatb.2015.07.036
    [15] 肖明, 黄在银, 汤焕丰, 等. Ag3PO4表面热力学性质及光催化原位过程热动力学的晶面效应[J].物理化学学报, 2017, 33(2):399-406. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201702019

    XIAO M, HUANG Z Y, TANG H F, et al. Faceteffect on surface thermodynamic properties and in-situ photocatalytic thermokinetics of Ag3PO4[J]. Acta Physico-Chimica Sinica, 2017, 33(2):399-406. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201702019
    [16] 万婷, 李星星, 黄在银, 等. g-C3N4@Ag3PO4光催化降解罗丹明B过程的原位光-微热量-荧光光谱研究[J].高等学校化学学报, 2017, 38(12):2226-2230. doi: 10.7503/cjcu20170371

    WAN T, LI X X, HUANG Z Y, et al. In-situphotocatalytic process of Rhodamine B over g-C3N4@Ag3PO4 nanocomposites based on photomicrocalorimeter-fluorescence spe-ctrometry[J]. Chemical Journal of Chinese Universities, 2017, 38(12):2226-2230. doi: 10.7503/cjcu20170371
    [17] LI X, WAN T, QIU J, et al. In-situ photocalorimetry-fluorescence spectroscopy studies of RhB photocatalysis over Z-scheme g-C3N4@Ag@Ag3PO4 nanocomposites:a pseudo-zero-order rather than a first-order process[J]. Applied Catalysis B:Environmental, 2017, 217:591-602. doi: 10.1016/j.apcatb.2017.05.086
    [18] FONTELLESCARCELLER O, MUÑOZBATISTA M J, FERNÁNDEZGARCÍA M, et al. Interface effects in sunlight-driven Ag/g-C3N4 composite catalysts:study of the toluene photodegradation quantum efficiency[J]. ACS Applied Materials & Interfaces, 2015, 8(4):2617-2627.
    [19] AO Y, TANG H, WANG P, et al. Deposition of Ag@AgCl onto two dimensional square-like BiOCl nanoplates for high visible-light photocatalytic activity[J]. Materials Letters, 2014, 131(25):74-77. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e6bb2bae9432fbc1ae0f89c99d9b8bcf
    [20] ZHANG S, LI J, WANG X, et al. In-situ ion exchange synthesis of strongly coupled Ag@AgCl/g-C3N4 porous nanosheets as plasmonic photocatalyst for highly efficient visible-light photocatalysis[J]. ACS Applied Materials & Interfaces, 2014, 6(24):22116-22125. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=88b2534bcceb6741bb6d964610970c22
    [21] HE Y, ZHANG L, TENG B, et al. New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel[J]. Environmental Science & Technology, 2015, 49(1):649-656. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=13944253df7d34cab2c7cb85282ad989
    [22] FAN W, LI M, BAI H, et al. Fabrication of MgFe2O4/MoS2 heterostructure nanowires for photoelectrochemical catalysis[J]. Langmuir, 2016, 32(6):1629-1636. doi: 10.1021/acs.langmuir.5b03887
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1859
  • HTML全文浏览量:  1268
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-09
  • 刊出日期:  2019-10-25

目录

    /

    返回文章
    返回