留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镍铁钴磷化物纳米片阵列的制备及其电催化析氧性能

张璋 胡先标

张璋, 胡先标. 镍铁钴磷化物纳米片阵列的制备及其电催化析氧性能[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 18-24. doi: 10.6054/j.jscnun.2019080
引用本文: 张璋, 胡先标. 镍铁钴磷化物纳米片阵列的制备及其电催化析氧性能[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 18-24. doi: 10.6054/j.jscnun.2019080
ZHANG Zhang, HU Xianbiao. Fabrication of Ni-Fe-Co Phosphide Nanosheets Array and its Electrocatalytic Oxygen Evolution Performance[J]. Journal of South China normal University (Natural Science Edition), 2019, 51(5): 18-24. doi: 10.6054/j.jscnun.2019080
Citation: ZHANG Zhang, HU Xianbiao. Fabrication of Ni-Fe-Co Phosphide Nanosheets Array and its Electrocatalytic Oxygen Evolution Performance[J]. Journal of South China normal University (Natural Science Edition), 2019, 51(5): 18-24. doi: 10.6054/j.jscnun.2019080

镍铁钴磷化物纳米片阵列的制备及其电催化析氧性能

doi: 10.6054/j.jscnun.2019080
基金项目: 

广东省自然科学基金项目 2018A030313377

详细信息
    通讯作者:

    张璋,教授,Email:zzhang@scnu.edu.cn

  • 中图分类号: TB34

Fabrication of Ni-Fe-Co Phosphide Nanosheets Array and its Electrocatalytic Oxygen Evolution Performance

  • 摘要: 采用溶剂热法将镍、铁和钴的硝酸盐溶液在180 ℃条件下反应24 h,经过后续磷化反应,在泡沫镍基底上生长镍铁钴磷化物纳米片阵列(NiFeCoP@NF).采用X射线衍射、扫描电子显微镜、透射电子显微镜、X射线光电子能谱等测试手段对材料进行了表征,并用电化学工作站研究了镍铁钴磷化物纳米片阵列的析氧性能.结果表明:当电流密度达到10 mA/cm2时,需要的过电势仅为160 mV,并且在恒定电流密度下,过电势可保持24 h.研究结果对于研究纳米结构的过渡金属磷化物电催化剂具有借鉴意义.
  • 图  1  镍铁钴氢氧化物前驱体和镍铁钴磷化物的XRD谱

    Figure  1.  The XRD spectra of Ni-Fe-Co hydroxide precursors and Ni-Fe-Co phosphide

    图  2  镍铁钴氢氧化物前驱体和镍铁钴磷化物的SEM图以及EDS能谱元素映射图

    Figure  2.  The SEM images and elemental mapping energy EDS spectra of Ni-Fe-Co hydroxide precursors and Ni-Fe-Co phosphides

    图  3  镍铁钴氢氧化物前驱体和镍铁钴磷化物的TEM图和EDS能谱元素映射图

    Figure  3.  The TEM images and elemental mapping energy EDS spectra of Ni-Fe-Co hydroxide precursors and Ni-Fe-Co phosphides

    图  4  镍铁钴氢氧化物、镍铁钴磷化物的XPS谱

    Figure  4.  The XPS spectra of Ni-Fe-Co hydroxides and Ni-Fe-Co phosphides

    图  5  氢氧化镍、镍铁氢氧化物、镍铁钴氢氧化物、磷化镍、镍铁磷化物和镍铁钴磷化物的电化学性能表征

    Figure  5.  The characterization of electrochemical properties of nickel hydroxides, Ni-Fe hydroxides, Ni-Fe-Co hydroxides, nickel phosphides, Ni-Fe phosphides and Ni-Fe-Co phosphides

    图  6  经过24 h计时电位法测试后镍铁钴磷化物的SEM图

    Figure  6.  The SEM images of Ni-Fe-Co phosphides after 24 h chronopotentiometric test

    图  7  在350 ℃下磷化反应2 h制备所得镍铁钴磷化物的SEM图及其对应的EDS能谱元素映射图

    Figure  7.  The SEM and elemental mapping energy EDS spectra of Ni-Fe-Co phosphides prepared by phosphating at 350 ℃ for 2 h

  • [1] DAI Z, GENG H, WANG J, et al. Hexagonal-phase cobalt monophosphosulfide for highly efficient overall water splitting[J]. ACS Nano, 2017, 11(11):11031-11040. doi: 10.1021/acsnano.7b05050
    [2] ANANTHARAJ S, EDE S R, SAKTHIKUMAR K, et al. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni:a review[J]. ACS Catalysis, 2016, 6(12):8069-8097. doi: 10.1021/acscatal.6b02479
    [3] YANG H, LUO S, BAO Y, et al. In situ growth of ultrathin Ni-Fe LDH nanosheets for high performance oxygen evolution reaction[J]. Inorganic Chemistry Frontiers, 2017, 4(7):1173-1181. doi: 10.1039/C7QI00167C
    [4] LIU J, ZHENG Y, WANG Z, et al. Free-standing single-crystalline NiFe-hydroxide nanoflake arrays:a self-activated and robust electrocatalyst for oxygen evolution[J]. Chemical Communications, 2018, 54(5):463-466. doi: 10.1039/C7CC08843D
    [5] NI Y, YAO L, WANG Y, et al. Construction of hierarchically porous graphitized carbon-supported NiFe layered double hydroxides with a core-shell structure as an enhanced electrocatalyst for the oxygen evolution reaction[J]. Nanoscale, 2017, 9(32):11596-11604. doi: 10.1039/C7NR03661B
    [6] ZHOU M, WENG Q, ZHANG X, et al. In situ electrochemical formation of core-shell nickel-iron disulfide and oxyhydroxide heterostructured catalysts for a stable oxygen evolution reaction and the associated mechanisms[J]. Journal of Materials Chemistry A, 2017, 5(9):4335-4342. doi: 10.1039/C6TA09366C
    [7] WU Z, WANG X, HUANG J, et al. A Co-doped Ni-Fe mixed oxide mesoporous nanosheet array with low overpotential and high stability towards overall water splitting[J]. Journal of Materials Chemistry A, 2018, 6(1):167-178. doi: 10.1039/C7TA07956G
    [8] CHEN J S, REN J, SHALOM M, et al. Stainless steel mesh-supported NiS nanosheet array as highly efficient catalyst for oxygen evolution reaction[J]. ACS Applied Materials & Interfaces, 2016, 8(8):5509-5516. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=11c8efa9a9c267b7cff7e942be17e2c7
    [9] SWESI A T, MASUD J, NATH M. Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction[J]. Energy & Environmental Science, 2016, 9(5):1771-1782.
    [10] TANG C, ZHANG R, LU W, et al. Energy-saving electrolytic hydrogen generation:Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst[J]. Angewandte Chemie International Edition, 2017, 56(3):842-846. doi: 10.1002/anie.201608899
    [11] YU J, CHENG G, LUO W. Hierarchical NiFeP microflowers directly grown on Ni foam for efficient electrocatalytic oxygen evolution[J]. Journal of Materials Chemistry A, 2017, 5(22):11229-11235. doi: 10.1039/C7TA02968C
    [12] 张璋, 曾志强, 程鹏飞, 等.高密度有序银纳米球阵列的模板辅助退火制备[J].华南师范大学学报(自然科学版), 2018, 50(4):23-27. http://journal-n.scnu.edu.cn/CN/abstract/abstract4456.shtml

    ZHANG Z, ZENG Z, CHENG P. The fabrication of noble metallic nanosphere arrays by a template-assisted dewetting[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(4):23-27. http://journal-n.scnu.edu.cn/CN/abstract/abstract4456.shtml
    [13] 张璋, 蝴蝶, 张晓燕.多孔AAO模板合成低维有序纳米结构阵列研究进展[J].华南师范大学学报(自然科学版), 2016, 48(6):83-91. http://journal-n.scnu.edu.cn/CN/abstract/abstract4064.shtml

    ZHANG Z, HU D, ZHANG X. Research progress of ordered nanostructure arrays on low-dimensional fabrication using porous anodic aluminum oxide template[J]. Journal of South China Normal University(Natural Science Edition), 2016, 48(6):83-91. http://journal-n.scnu.edu.cn/CN/abstract/abstract4064.shtml
    [14] LONG X, LI J, XIAO S, et al. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction[J]. Angewandte Chemie, 2014, 126(29):7714-7718. doi: 10.1002/ange.201402822
    [15] DINH K N, ZHENG P, DAI Z, et al. Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting[J]. Small, 2018, 14(8):1703257/1-9. doi: 10.1002/smll.201703257
    [16] CHEN S, DUAN J, JARONIEC M, et al. Three-dimensional N-doped graphene hydrogel/NiCo double hydro-xide electrocatalysts for highly efficient oxygen evolution[J]. Angewandte Chemie International Edition, 2013, 52(51):13567-13570. doi: 10.1002/anie.201306166
    [17] STERN L A, FENG L, SONG F, et al. Ni2P as a Janus catalyst for water splitting:the oxygen evolution activity of Ni2P nanoparticles[J]. Energy & Environmental Science, 2015, 8(8):2347-2351.
    [18] LI J, YAN M, ZHOU X, et al. Mechanistic insights on ternary Ni2-xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting[J]. Advanced Functional Materials, 2016, 26(37):6785-6796. doi: 10.1002/adfm.201601420
    [19] XU J, LI J, XIONG D, et al. Trends in activity for the oxygen evolution reaction on transition metal (M=Fe, Co, Ni) phosphide pre-catalysts[J]. Chemical Science, 2018, 9(14):3470-3476. doi: 10.1039/C7SC05033J
    [20] LIU K, ZHANG C, SUN Y, et al. High-performance transition metal phosphide alloy catalyst for oxygen evolution reaction[J]. ACS Nano, 2018, 12(1):158-167. doi: 10.1021/acsnano.7b04646
    [21] ZHANG R, WANG X, YU S, et al. Ternary NiCo2Px Nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction[J]. Advanced Materials, 2017, 29(9):1605502/1-6. doi: 10.1002/adma.201605502
    [22] DONG B, ZHAO X, HAN G Q, et al. Two-step synthesis of binary Ni-Fe sulfides supported on nickel foam as highly efficient electrocatalysts for the oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2016, 4(35):13499-13508. doi: 10.1039/C6TA03177C
    [23] JIANG N, YOU B, SHENG M, et al. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting[J]. Angewandte Chemie International Edition, 2015, 54(21):6251-6254. doi: 10.1002/anie.201501616
    [24] WANG Z, LI J, TIAN X, et al. Porous nickel-iron selenide nanosheets as highly efficient electrocatalysts for oxygen evolution reaction[J]. ACS Applied Materials & Interfaces, 2016, 8(30):19386-19392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3c3f412f25509e0c0509ede413ff2ecf
    [25] LIU K, ZHANG C, SUN Y, et al. High-performance transition metal phosphide alloy catalyst for oxygen evolution reaction[J]. ACS Nano, 2018, 12(1):158-167. doi: 10.1021/acsnano.7b04646
    [26] LI J, LI J, ZHOU X, et al. Highly efficient and robust nickel phosphides as bifunctional electrocatalysts for overall water-splitting[J]. ACS Applied Materials & Interfaces, 2016, 8(17):10826-10834.
  • 加载中
图(7)
计量
  • 文章访问数:  3135
  • HTML全文浏览量:  1618
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-28
  • 刊出日期:  2019-10-25

目录

    /

    返回文章
    返回