留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类不变子空间与不变子空间的关系

古雯 倪军娜

古雯, 倪军娜. 类不变子空间与不变子空间的关系[J]. 华南师范大学学报(自然科学版), 2019, 51(4): 100-103. doi: 10.6054/j.jscnun.2019072
引用本文: 古雯, 倪军娜. 类不变子空间与不变子空间的关系[J]. 华南师范大学学报(自然科学版), 2019, 51(4): 100-103. doi: 10.6054/j.jscnun.2019072
GU Wen, NI Junna. The Relationship between Similar Invariant Subspaces and Invariant Subspaces[J]. Journal of South China normal University (Natural Science Edition), 2019, 51(4): 100-103. doi: 10.6054/j.jscnun.2019072
Citation: GU Wen, NI Junna. The Relationship between Similar Invariant Subspaces and Invariant Subspaces[J]. Journal of South China normal University (Natural Science Edition), 2019, 51(4): 100-103. doi: 10.6054/j.jscnun.2019072

类不变子空间与不变子空间的关系

doi: 10.6054/j.jscnun.2019072
基金项目: 

广东省自然科学基金项目 2016A030313850

详细信息
    通讯作者:

    倪军娜,副教授,Email:nijunna@ 126.com

  • 中图分类号: O15

The Relationship between Similar Invariant Subspaces and Invariant Subspaces

  • 摘要: 给出了“类不变子空间”的定义,研究了可逆线性变换和一般线性变换的类不变子空间与不变子空间的关系:利用向量空间的理论,证明了对于可逆线性变换,类不变子空间与不变子空间是等价的;进一步证明对于非可逆的线性变换,类不变子空间是不变子空间,反之不成立.
  • [1] 周晓阳, 石岩月, 卢玉峰.多圆盘的加权Bergman空间上的不变子空间和约化子空间[J].中国科学:数学, 2011, 41(5):427-438. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ca201105004

    ZHOU X Y, SHI Y Y, LU Y F. Invariant subspaces and reducing subspaces of weighted Bergman space over polydisc[J]. Scientia Sinica:Mathematica, 2011, 41(5):427-438. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ca201105004
    [2] JIE S X, GUANG F C. Wandering subspaces and quasi-wandering subspaces in the Hardy-Sobolev spaces[J]. Acta Mathematica Sinica:English Series, 2017, 33(12):1684-1692. doi: 10.1007/s10114-017-7041-2
    [3] XU X M, FANG X C, GAO F G. Principal invariant subspaces theorems[J]. Linear & Multilinear Algebra:An International Journal Publishing Articles, Reviews and Pro-blems, 2014, 62(10):1428-1436. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0233696766/
    [4] 朱春蓉, 窦彩玲.一般非齐次非线性扩散方程的等价变换和高维不变子空间[J].数学年刊:A辑, 2015, 36(3):291-302. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxnk201503006

    ZHU C R, DOU C L. Equivalent transformations and higher-dimensional invariant subspaces of generalized inhomogeneous nonlinear diffusion equations[J]. Chinese Annals of Mathematics:Series A, 2015, 36(3):291-302. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxnk201503006
    [5] 左苏丽, 勾明, 李吉娜, 等. Black-Scholes方程的条件Lie-Backlund对称和不变子空间[J].工程数学学报, 2015, 32(6):883-892. doi: 10.3969/j.issn.1005-3085.2015.06.009

    ZUO S L, GOU M, LI J N, et al. Conditional Lie-Backlund symmetry and invariant subspace for Black-Scholes equation[J]. Chinese Journal of Engineering Mathema-tics, 2015, 32(6):883-892. doi: 10.3969/j.issn.1005-3085.2015.06.009
    [6] MA W X, LIU Y P. Invariant subspaces and exact solutions of a class of dispersive evolution equations[J]. Communications in Nonlinear Science and Numerical Simu-lation, 2012, 17(10):3795-3801. doi: 10.1016/j.cnsns.2012.02.024
    [7] BYERS R, KRESSNER D. Structured condition numbers for invariant subspaces[J]. SIAM Journal on Matrix Analy-sis and Applications, 2006, 28(2):326-347. doi: 10.1137/050637601
    [8] BEATTLE C, EMBREE M, ROSSI J. Convergence of restarted Krylov subspaces to invariant subspaces[J]. SIAM Journal on Matrix Analysis and Applications, 2004, 25(4):1074-1109. doi: 10.1137/S0895479801398608
    [9] YOUSEFI B, KHOSHDEL S, JAHANSHAHI Y. Multiplication operators on invariant subspaces of function spaces[J]. Acta Mathematica Scientia:Series B, 2013, 33(5):1463-1470. doi: 10.1016/S0252-9602(13)60096-X
    [10] POPOV A I, RADJAVI H, MARCOUX L W. On almost-invariant subspaces and approximate commutation[J]. Journal of Functional Analysis, 2013, 264(4):1088-1111. doi: 10.1016/j.jfa.2012.11.010
    [11] BROWN S W, CHEVREAN B, PEARCY C. On the structure of contraction operators Ⅱ[J]. Journal of Functional Analysis, 1988(76):1-29. https://www.sciencedirect.com/science/article/pii/002212368890047X
    [12] BROWN S W. Hyponormal operators with thick spectra have invariant subspaces[J]. Annals of Mathematics, 1987(125):93-103. doi: 10.2307-1971289/
    [13] JOHNSON W B, LINDENSTRAUSS J. Handbook of the geometry of Banach spaces[M]. North Holland:Elsevier, 2001:85-122.
    [14] ANSARI S, ENFLO P. Extremal vectors and invariant subspaces[J]. Transactions of the American Mathematical, 1998, 350(2):539-558. doi: 10.1090/S0002-9947-98-01865-0
    [15] IZUCHI K J, IZUCHI K H. Rank-one cross commutators on backward shift invariant subspaces on the bidisk[J]. Acta Mathematica Sinica, 2009, 25(5):693-714. doi: 10.1007/s10114-009-7215-7
    [16] GOHBERG I, LANCASTER P, RODMAN L. Invariant subspaces of matrices with applications[M]. Philadelphia:Society for Industrial and Applied Mathematics, 2006:671-672.
    [17] CHEN J J, WANG X F, XIA J, et al. Riccati equations and Toeplitz-Berezin type symbols on Dirichlet space of unit ball[J]. Frontiers of Mathematics in China, 2017, 12(4):769-785. doi: 10.1007/s11464-017-0640-5
    [18] 张禾瑞, 郝鈵新.高等代数[M]. 5版.北京: 高等教育出版社, 2007: 163-233.
  • 加载中
计量
  • 文章访问数:  1881
  • HTML全文浏览量:  595
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-20
  • 刊出日期:  2019-08-25

目录

    /

    返回文章
    返回