留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面分子印迹固相萃取微球的制备及其在谷氨酸分离检测中的应用

何佩玲 陈时远 胡小刚

何佩玲, 陈时远, 胡小刚. 表面分子印迹固相萃取微球的制备及其在谷氨酸分离检测中的应用[J]. 华南师范大学学报(自然科学版), 2019, 51(4): 32-38. doi: 10.6054/j.jscnun.2019061
引用本文: 何佩玲, 陈时远, 胡小刚. 表面分子印迹固相萃取微球的制备及其在谷氨酸分离检测中的应用[J]. 华南师范大学学报(自然科学版), 2019, 51(4): 32-38. doi: 10.6054/j.jscnun.2019061
HE Peiling, CHEN Shiyuan, HU Xiaogang. Preparation of Microspheres for Molecularly Imprinted Surface Solid Phase Extraction and its Application in the Separation and Detection of Glutamic Acid[J]. Journal of South China normal University (Natural Science Edition), 2019, 51(4): 32-38. doi: 10.6054/j.jscnun.2019061
Citation: HE Peiling, CHEN Shiyuan, HU Xiaogang. Preparation of Microspheres for Molecularly Imprinted Surface Solid Phase Extraction and its Application in the Separation and Detection of Glutamic Acid[J]. Journal of South China normal University (Natural Science Edition), 2019, 51(4): 32-38. doi: 10.6054/j.jscnun.2019061

表面分子印迹固相萃取微球的制备及其在谷氨酸分离检测中的应用

doi: 10.6054/j.jscnun.2019061
基金项目: 

国家自然科学基金项目 21775048

广东省科技计划项目 2013B091500093

广东省自然科学基金项目 2017A030313060

详细信息
    通讯作者:

    胡小刚,教授,Email:huxg@scnu.edu.cn

  • 中图分类号: O65

Preparation of Microspheres for Molecularly Imprinted Surface Solid Phase Extraction and its Application in the Separation and Detection of Glutamic Acid

  • 摘要: 以L-谷氨酸为模板分子、2-丙烯酰胺-2-甲基丙磺酸为功能单体、N, N-亚甲基双丙烯酰胺为交联剂,采用可逆加成-断裂链转移活性自由基聚合法制备表面分子印迹固相萃取(MISPE)微球,并对制备的印迹微球进行傅立叶变换红外光谱、扫描电镜、热重分析等表征.萃取实验结果表明:该微球可实现L-谷氨酸的选择性分离富集,萃取容量为140 μg/g.结合MISPE方法与高效液相色谱检测技术,可实现酱油中L-谷氨酸的快速分析检测,线性范围为1.47~58.9 μg/mL,检出限为44.1 ng/mL,加标回收率为77.8%~82.2%.
  • 图  1  印迹硅胶微球制备流程的示意图

    Figure  1.  The sketch diagram of preparation procedures for imprinted silica microspheres

    图  2  不同微球的红外光谱

    a.硅烷化硅胶微球; b.RAFT功能化硅胶微球; c.印迹硅胶微球

    Figure  2.  The infrared spectra of different microspheres

    图  3  空白硅胶微球和印迹硅胶微球的SEM图

    Figure  3.  The SEM of silica microspheres and imprinted silica microspheres

    图  4  空白硅胶微球及印迹硅胶微球的热重曲线

    Figure  4.  The thermogravimetric curve of blank silica microspheres and imprinted silica microspheres

    图  5  MISPE柱和NISPE柱对不同浓度L-Glu的萃取容量及印迹因子曲线

    Figure  5.  The amounts of L-Glu acid adsorbed by MISPE column and NISPE column and the curve of imprinting factor

    图  6  谷氨酸及其他5种氨基酸对照物的分子结构式

    Figure  6.  The molecular structure of glutamic acid and other five amino acid controls

    图  7  MISPE柱和NISPE柱对不同氨基酸的萃取容量

    Figure  7.  The amounts of several kinds of amino acid extracted by MISPE column and NISPE column

    图  8  MISPE柱重复使用次数对L-Glu萃取容量的影响

    Figure  8.  The effect of reuse times on the amount of L-Glu extracted by the MISPE

    图  9  酱油原液的液相解析谱

    Figure  9.  The HPLC chromatograms of the soy sauce stock solution

    图  10  1.47 μg/mL的L-Glu加标生抽洗脱液解析谱

    Figure  10.  The HPLC chromatograms of the centrifugal liquid of brew soy sauce with addition of 1.47 μg/mL of L-Glu

    表  1  酱油原液、加标生抽样品中L-Glu回收率

    Table  1.   The recovery rates of L-Glu acid in spiked soy sauce and feed solution of soy sauce

    样品 添加质量浓度/(μg·mL-1) 检测质量浓度/(μg·mL-1) 回收率/% RSD/%
    酱油原液 0 32.1 - -
    1.47 33.3 82.2 4.7
    7.35 37.8 77.8 3.5
    生抽 0 15.7 - -
    1.47 16.9 80.6 4.8
    7.35 22.7 78.4 4.4
    下载: 导出CSV
  • [1] ASHIUCHI M, FUKUSHIMA K, OYA H, et al. Development of antimicrobial thermoplastic material from archaeal poly-γ-L-glutamate and its nanofabrication[J]. ACS Applied Materials & Interfaces, 2013, 5(5):1619-1624. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1f94025f0f6ab9f702f6bd758f2f121a
    [2] HUTCHINGS J A, SHIELDSM R, BIANCHI T S, et al. A rapid and precise method for the analysis of underivatized amino acids in natural samples using volatile-ion-pairing reverse-phase liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Organic Geochemistry, 2018, 115:46-56. doi: 10.1016/j.orggeochem.2017.10.007
    [3] PEI D N, ZHANG A Y, PAN X Q, et al. Electrochemical sensing of Bisphenol A on facet-tailored TiO2 single crystals engineered by inorganic-framework molecular imprinting sites[J]. Analytical Chemistry, 2018, 90(5): 3165-3173. doi: 10.1021/acs.analchem.7b04466
    [4] XIE C, ZHOU H, GAO S, et al. Molecular imprinting met-hod for on-line enrichment and chemiluminescent detection of the organophosphate pesticide triazophos[J]. Microchimica Acta, 2010, 171(3/4):355-362.
    [5] QIN Y P, JIA C, HE X W, et al. Thermosensitive metal chelation dual-template epitope imprinting polymer using distillation-precipitation polymerization for simultaneous recognition of human serum albumin and transferrin[J]. ACS Applied Materials & Interfaces, 2018, 10(10):9060-9068. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=45ce3e43084efc730dfb232df1ed887f
    [6] 胡小刚, 汤又文.分子印迹聚合物制备技术研究进展[J].华南师范大学学报(自然科学版), 2003(3):150-157. doi: 10.3969/j.issn.1000-5463.2003.03.027

    HU X G, TANG Y W. Progress in preparation technique of molecularly imprinted polymer[J]. Journal of South China Normal University (Natural Science Edition), 2003(3):150-157. doi: 10.3969/j.issn.1000-5463.2003.03.027
    [7] 陈忻, 陈晓刚, 潘嘉慧, 等.莱克多巴胺新型分子印迹纳米管膜的研究及应用[J].华南师范大学学报(自然科学版), 2017, 49(4):39-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnsfdx201704008

    CHEN Q, CHEN X G, PAN J H, et al. Novel molecularly imprinted polymer nanotube membranes for ractopamine[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(4):39-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnsfdx201704008
    [8] HU X, PAN J, HU Y, et al. Preparation and evaluation of solid-phase microextraction fiber based on molecularly imprinted polymers for trace analysis of tetracyclines in complicated samples[J]. Journal of Chromatography A, 2008, 1188(2):97-107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c1688a76e2861133073cb4c762ca5075
    [9] 胡小刚, 汤又文.分子印迹固相萃取-紫外分光光度法测定阿司匹林的研究[J].华南师范大学学报(自然科学版), 2006(4):88-92. doi: 10.3969/j.issn.1000-5463.2006.04.017

    HU X G, TANG Y W. The quantitative analysis of aspirin by molecularly imprinted solid-phase extraction technique[J]. Journal of South China Normal University(Natural Science Edition), 2006(4):88-92. doi: 10.3969/j.issn.1000-5463.2006.04.017
    [10] SONG Z, HUANG Y, PRASAD V, et al. Preparation of surfactant-resistant polymersomes with ultrathick Membranes through RAFT dispersion polymerization[J]. ACS Applied Materials & Interfaces, 2016, 8(27):17033-17037. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ccabb81baa65fa79b3abdfae8f2d0a9b
    [11] GANACHAUD F, MONTEIRO M J, GILBERT R G, et al. Molecular weight characterization of poly(N-isopropylacrylamide) prepared by living free-radical polymerization[J]. Macromolecules, 2000, 33(18):6738-6745. doi: 10.1021/ma0003102
    [12] SOYLEMEZ M A, GUVEN O, BARSBAY M. Method for preparing a well-defined molecularly imprinted polymeric system via radiation-induced RAFT polymerization[J]. European Polymer Journal, 2018, 103:21-30. doi: 10.1016/j.eurpolymj.2018.03.037
    [13] CHEN F, WANG J, CHEN H, et al. Microwave-assisted RAFT polymerization of well-constructed magnetic surface molecularly imprinted polymers for specific recognition of benzimidazole residues[J]. Applied Surface Science, 2018, 435:247-255. doi: 10.1016/j.apsusc.2017.11.061
    [14] ROMANO E F, SO R C, DONNE S W, et al. Preparation and binding evaluation of histamine-imprinted microspheres via conventional thermal and RAFT-mediated free-radical polymerization[J]. ACS Omega, 2016, 1(4):518-531. doi: 10.1021/acsomega.6b00144
    [15] SHANMUGAM S, CUTHBERT J, KOWALEWSKI T, et al. Catalyst-free selective photoactivation of RAFT polymerization:a facile route for preparation of comblike and bottlebrush polymers[J]. Macromolecules, 2018, 51(19):7776-7784. doi: 10.1021/acs.macromol.8b01708
    [16] COSSON S, DANIAL M, SAINT-AMANS J R, et al. Accelerated combinatorial high throughput star polymer synthesis via a rapid one-pot sequential aqueous RAFT (rosa-RAFT) polymerization scheme[J]. Macromolecular Rapid Communications, 2017, 38(8):1600780/1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8d5ca08f9dc0be1f4f9c573feb4ce93d
    [17] ZHAO M, CHEN X, ZHANG H, et al. Well-defined hydrophilic molecularly imprinted polymer microspheres for efficient molecular recognition in real biological samples by facile RAFT coupling chemistry[J]. Biomacromolecules, 2014, 15(5):1663-1675. doi: 10.1021/bm500086e
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1851
  • HTML全文浏览量:  611
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-23
  • 刊出日期:  2019-08-25

目录

    /

    返回文章
    返回