留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单层含硫空位MoS2光伏效应的第一性原理研究

罗文铭 邵志刚 杨谋

罗文铭, 邵志刚, 杨谋. 单层含硫空位MoS2光伏效应的第一性原理研究[J]. 华南师范大学学报(自然科学版), 2019, 51(4): 7-13. doi: 10.6054/j.jscnun.2019057
引用本文: 罗文铭, 邵志刚, 杨谋. 单层含硫空位MoS2光伏效应的第一性原理研究[J]. 华南师范大学学报(自然科学版), 2019, 51(4): 7-13. doi: 10.6054/j.jscnun.2019057
LUO Wenming, SHAO Zhigang, YANG Mou. A First Principle Study of the Photogalvanic Effect of Monolayer MoS2 with Sulfur Vacancies[J]. Journal of South China normal University (Natural Science Edition), 2019, 51(4): 7-13. doi: 10.6054/j.jscnun.2019057
Citation: LUO Wenming, SHAO Zhigang, YANG Mou. A First Principle Study of the Photogalvanic Effect of Monolayer MoS2 with Sulfur Vacancies[J]. Journal of South China normal University (Natural Science Edition), 2019, 51(4): 7-13. doi: 10.6054/j.jscnun.2019057

单层含硫空位MoS2光伏效应的第一性原理研究

doi: 10.6054/j.jscnun.2019057
基金项目: 

国家自然科学基金项目 11774100

广东省科技计划项目 2018A030313322

详细信息
    通讯作者:

    邵志刚,教授,Email:zgshao@scnu.edu.cn

  • 中图分类号: O469

A First Principle Study of the Photogalvanic Effect of Monolayer MoS2 with Sulfur Vacancies

  • 摘要: 基于非平衡态格林函数——密度泛函理论,采用第一性原理研究方法,对单层含硫空位MoS2的光伏效应进行了研究.利用能带图和联合态密度分析单层含硫空位MoS2的光响应函数.结果表明:对于单层含硫空位的MoS2,线偏光电流效应不明显,而圆偏光电流效应比较明显.计算模拟了随偏振角(相位角)变化的光响应函数,计算结果符合唯象理论.单层含硫空位的MoS2可被应用于新型电子和光电子器件中,为进一步认识单层硫空位MoS2的光电流效应提供了新的理论基础.
  • 图  1  单层含硫空位MoS2的两端口器件结构

    Figure  1.  The two-probe device structures of monolayer MoS2 with sulfur vacancies

    图  2  单层MoS2、单层含硫空位MoS2的能带图

    Figure  2.  The band structure of monolayer MoS2 and monolayer MoS2 with sulfur vacancies

    图  3  单层含硫空位MoS2的光响应函数随能量的变化

    Figure  3.  The photoresponse function with the energy of monolayer MoS2 with sulfur vacancies

    图  4  单层含硫空位MoS2的联合态密度图

    Figure  4.  The JDOS of monolayer MoS2 with sulfur vacancies

    图  5  用线偏光垂直照射单层含硫空位的MoS2θ变化的光响应函数

    Figure  5.  The variation of photoresponse function with θ when monolayer MoS2 with sulfur vacancies is vertically irradiated by the linearly polarized light

    图  6  用椭偏光垂直照射单层含硫缺陷的MoS2φ变化的光响应函数

    Figure  6.  The variation of photoresponse function with φ when monolayer MoS2 with sulfur vacancies is vertically irradiated by the elliptically polarized light

  • [1] EDA G, YAMAGUCHI H, VOIRY D, et al. Photoluminescence from chemically exfoliated MoS2[J]. Nano Letters, 2011, 11(12):5111-5116. doi: 10.1021/nl201874w
    [2] MA K F, LEE C, HONE J, et al. Atomically thin MoS2:a new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13):136805/1-4. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0224488629/
    [3] WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11):699-712. doi: 10.1038/nnano.2012.193
    [4] ZHANG H, LU S B, ZHENG J, et al. Molybdenum disulfide(MoS2) as a broadband saturable absorber for ultra-fast photonics[J]. Optics Express, 2014, 22(6):7249-7260. doi: 10.1364/OE.22.007249
    [5] CHENG R, LI D, ZHOU H, et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes[J]. Nano Letters, 2014, 14(10):5590-5597. doi: 10.1021/nl502075n
    [6] MA K F, HE K, SHAN J, et al. Control of valley polarization in monolayer MoS2 by optical helicity[J]. Nature Nanotechnology, 2012, 7(8):494-498. doi: 10.1038/nnano.2012.96
    [7] SPLENDIANI A, SUN L, ZHANG Y, et al. Emerging Photoluminescence in Monolayer MoS2[J]. Nano Letters, 2010, 10(4):1271-1275. doi: 10.1021/nl903868w
    [8] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3):147-150. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0220379154/
    [9] LOPEZ-SANCHEZ O, LEMBKE D, KAYCI M, et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 2013, 8(7):497-501. doi: 10.1038/nnano.2013.100
    [10] 王饮, 杨秧, 敖献煜.原子层沉积增强微纳结构硅电池的光电性能[J].华南师范大学学报(自然科学版), 2017, 49(5):43-47. http://d.old.wanfangdata.com.cn/Periodical/hnsfdx201705007

    WANG Y, YANG Y, AO X Y. Enhanced photovoltaic performance of micro-nano structured silicon solar cells by atomic layer deposition[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(5):43-47. http://d.old.wanfangdata.com.cn/Periodical/hnsfdx201705007
    [11] 王熙, 董海太, 齐中, 等.复合光催化膜MoS2/Ag/TiO2同步降解有机物及产氢的研究[J].华南师范大学学报(自然科学版), 2017, 49(4):51-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnsfdx201704010

    WANG X, DONG H T, QI Z, et al. Simultaneously hydrogen production and organic degradation by composite MoS2/Ag/TiO2 Film[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(4):51-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnsfdx201704010
    [12] BELINICHER V I, STURMAN B I. The photogalvanic effect in media lacking a center of symmetry[J]. Uspekhi Fizicheskih Nauk, 1980, 130(3):415-458. doi: 10.3367/UFNr.0130.198003b.0415
    [13] GUAN H, TANG N, XU X, et al. Photon wavelength dependent valley photocurrent in multilayer MoS2[J]. Phy-sical Review B:Condensed Matter, 2017, 96(24):241304/1-6. http://www.irgrid.ac.cn/handle/1471x/1628952?mode=full&submit_simple=Show+full+item+record
    [14] ZHAO P, LI J, WEI W, et al. Giant anisotropic photogalvanic effect in a flexible AsSb monolayer with ultrahigh carrier mobility[J]. Physical Chemistry Chemical Phy-sics, 2017, 19(40):27233-27239. doi: 10.1039/C7CP05201D
    [15] LI J, YANG W, LIU J T, et al. Enhanced circular photogalvanic effect in HgTe quantum wells in the heavily inverted regime[J]. Physical Review B:Condensed Matter, 2017, 95(3):035308/1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5653cd8d738ffb9cbeb6c47b0dfaadce
    [16] GANICHEV S D, WEISS D, EROMS J. Terahertz electric field driven electric currents and ratchet effects in graphene[J]. Annalen der Physik, 2017, 529(11):1600406/1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/andp.201600406
    [17] GANICHEV S D, PRETTL W. Spin photocurrents in quantum wells[J]. Journal of Physics:Condensed Matter, 2003, 15(20):R935-R983. doi: 10.1088/0953-8984/15/20/204
    [18] ZENG X L, YU J L, CHENG S Y, et al. Temperature dependence of photogalvanic effect in GaAs/AlGaAs two-dimensional electron gas at interband and intersubband excitation[J]. Journal of Applied Physics, 2017, 121(19):193901/1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5a108fbcad8a1d93169ac8b7d13b5bf3
    [19] KASTL C, KARNETZKY C, BRENNEIS A, et al. Topo-logical insulators as ultrafast auston switches in on-chip THz-circuits[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4):1-5.
    [20] DANTSCHER K M, KOZLOV D A, SCHERR M T, et al. Photogalvanic probing of helical edge channels in two-dimensional HgTe topological insulators[J]. Physical Review B:Condensed Matter, 2017, 95(20):201103/1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8b9065d04eee36e6614cfd54b77220f1
    [21] KURODA K, REIMANN J, KOKH K A, et al. Ultrafast energy-and momentum-resolved surface Dirac photocurrents in the topological insulator Sb2Te3[J]. Physical Review B:Condensed Matter, 2017, 95(8):081103/1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fceceb0cea735ee2027c9d0eb8546656
    [22] KÖNIG E J, XIE H Y, PESIN D A, et al. Photogalvanic effect in Weyl semimetals[J]. Physical Review B:Condensed Matter, 2017, 96(7):075123/1-13.
    [23] FERNANDO D J, GRUSHIN A G, MORIMOTO T, et al. Quantized circular photogalvanic effect in Weyl semimetals[J]. Nature Communications, 2017, 8:15995/1-9.
    [24] SUN K, SUN S S, WEI L L, et al. Circular photogalvanic effect in the Weyl semimetal TaAs[J]. Chinese Physics Letters, 2017, 34(11):117203/1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9376963
    [25] XIE Y, ZHANG L, ZHU Y, et al. Photogalvanic effect in monolayer black phosphorus[J]. Nanotechnology, 2015, 26(45):455202/1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=52865d3cbd682d6e2061aceec0dff1c8
    [26] ZHANG L, GONG K, CHEN J, et al. Generation and transport of valley-polarized current in transition-metal dichalcogenides[J]. Physical Review B:Condensed Matter, 2014, 90(19):195428/1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdeb803d080e74d1e8ad090163ccd86e
    [27] CHEN J, HU Y, GUO H. First-principles analysis of photocurrent in graphene p-n junctions[J]. Physical Review B:Condensed Matter, 2012, 85(15):155441/1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0e729957c9a3a474cf3fd643f227a834
    [28] ZHANG W, XIE Z Y, WU X B, et al. Acid-engineered defective MoS2, as an efficient electrocatalyst for hydrogen evolution reaction[J]. Materials Letters, 2018, 230:232-235. doi: 10.1016/j.matlet.2018.07.108
    [29] MOSTAFA H, BOHAYRA M, ALIREZA O, et al. Hydrogenation and defect formation control the strength and ductility of MoS2 nanosheets:reactive molecular dynamics simulation[J]. Extreme Mechanics Letters, 2018, 22:157-164. doi: 10.1016/j.eml.2018.05.008
    [30] WU K, LI Z, TANG J, et al. Controllable defects implantation in MoS2 grown by chemical vapor deposition for photoluminescence enhancement[J]. Nano Research, 2018, 11(8):4123-4132. doi: 10.1007/s12274-018-1999-7
    [31] ZHANG L F, KE X, OU G, et al. Defective MoS2 electrocatalyst for highly efficient hydrogen evolution through a simple ball-milling method[J]. Science China Materials, 2017, 60(9):849-856. doi: 10.1007/s40843-017-9086-9
    [32] SHIDPOUR R, MOVAHED S M S. Identification of defective two dimensional semiconductors by multifractal analysis:the single-layer MoS2 case study[J]. Physica A:Statistical Mechanics and its Applications, 2018, 508:757-770. doi: 10.1016/j.physa.2018.05.078
    [33] SALEHI S, SAFFARZADEH A. Optoelectronic properties of defective MoS2 and WS2 monolayers[J]. Journal of Physics and Chemistry of Solids, 2018, 121:172-176. doi: 10.1016/j.jpcs.2018.05.020
    [34] FÖRSTER A, GEMMING S, SEIFERT G. Functional thiols as repair and doping agents of defective MoS2 monolayers[J]. Journal of Physics:Condensed Matter, 2018, 30(23):235302/1-6. https://www.ncbi.nlm.nih.gov/pubmed/29701604
    [35] FELICE D, DAPPE Y J, GONZÁLEZ C. Forces and electronic transport in a contact formed by a graphene tip and a defective MoS2 monolayer:a theoretical study[J]. Nanotechnology, 2018, 29(22):225704/1-12.
    [36] JU W, LI T, SU X, et al. Au cluster adsorption on perfect and defective MoS2 monolayers:structural and electronic properties[J]. Physical Chemistry Chemical Physics, 2017, 19(31):20735-20748. doi: 10.1039/C7CP03062B
    [37] SHU H, LI Y, NIU X, et al. Greatly enhanced optical absorption of a defective MoS2 monolayer through oxygen passivation[J]. ACS Applied Materials & Interfaces, 2016, 8(20):13150-13156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=efbb3cc935cdd1be0ea8d887d797e81c
    [38] ZHENG L, HAN S, LIU H, et al. Hierarchical MoS2 nanosheet@ TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances[J]. Small, 2016, 12(11):1527-1536. doi: 10.1002/smll.201503441
    [39] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift für Kristallographie-Crystalline Materials, 2005, 220(5/6):567-570. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027843518/
    [40] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation:ideas, illustrations and the CASTEP code[J]. Journal of Physics:Condensed Matter, 2002, 14(11):2717-2744. doi: 10.1088/0953-8984/14/11/301
    [41] TAYLOR J, GUO H, WANG J. Ab initio modeling of quantum transport properties of molecular electronic devices[J]. Physical Review B:Condensed Matter, 2001, 63(24):245407/1-13. doi: 10.1103-PhysRevB.63.245407/
    [42] WALDRON D, HANEY P, LARADE B, et al. Nonlinear spin current and magnetoresistance of molecular tunnel junctions[J]. Physical Review Letters, 2006, 96(16):166804/6273-6281. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM16712257
    [43] HENRICKSON L E. Nonequilibrium photocurrent mode-ling in resonant tunneling photodetectors[J]. Journal of Applied Physics, 2002, 91(10):6273-6281. doi: 10.1063/1.1473677
    [44] ORAPUNT F, O'LEARY S K. Optical transitions and the mobility edge in amorphous semiconductors:a joint density of states analysis[J]. Journal of Applied Physics, 2008, 104(7):073513/1-14. https://www.researchgate.net/publication/253582298_Optical_transitions_and_the_mobility_edge_in_amorphous_semiconductors_A_joint_density_of_states_analysis
    [45] GANICHEV S D, RÖSSLER U, PRETTL W, et al. Removal of spin degeneracy in p-SiGe quantum wells demonstrated by spin photocurrents[J]. Physical Review B:Condensed Matter, 2002, 66(7):075328/1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a4c4b9b8911563caf06deaed9acbad6c
    [46] GANICHEV S D, KETTERL H, PRETTL W, et al. Circular photogalvanic effect induced by monopolar spin orientation in p-GaAs/AlGaAs multiple-quantum wells[J]. Applied Physics Letters, 2000, 77(20):3146-3148. doi: 10.1063/1.1326488
  • 加载中
图(6)
计量
  • 文章访问数:  2349
  • HTML全文浏览量:  821
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-25
  • 刊出日期:  2019-08-25

目录

    /

    返回文章
    返回