留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnO陷光结构材料的制备及其太阳能电池性能的研究

贺冠南 黄波

贺冠南, 黄波. ZnO陷光结构材料的制备及其太阳能电池性能的研究[J]. 华南师范大学学报(自然科学版), 2019, 51(4): 1-6. doi: 10.6054/j.jscnun.2019056
引用本文: 贺冠南, 黄波. ZnO陷光结构材料的制备及其太阳能电池性能的研究[J]. 华南师范大学学报(自然科学版), 2019, 51(4): 1-6. doi: 10.6054/j.jscnun.2019056
HE Guannan, HUANG Bo. Preparation of ZnO Light Trapping Materials and their Performance in Solar Cells[J]. Journal of South China normal University (Natural Science Edition), 2019, 51(4): 1-6. doi: 10.6054/j.jscnun.2019056
Citation: HE Guannan, HUANG Bo. Preparation of ZnO Light Trapping Materials and their Performance in Solar Cells[J]. Journal of South China normal University (Natural Science Edition), 2019, 51(4): 1-6. doi: 10.6054/j.jscnun.2019056

ZnO陷光结构材料的制备及其太阳能电池性能的研究

doi: 10.6054/j.jscnun.2019056
基金项目: 

国家自然科学基金项目 11574091

国家自然科学基金项目 11674106

国家自然科学基金项目 11474104

广东省自然科学基金项目 2017A030310064

详细信息
    通讯作者:

    黄波,副教授,Email:abohuang@gmail.com

  • 中图分类号: O734

Preparation of ZnO Light Trapping Materials and their Performance in Solar Cells

  • 摘要: 采用一步低温水溶液法在未制绒的单晶硅材料表面制备ZnO纳米棒阵列陷光结构材料,通过调控生长温度,对纳米棒阵列参数进行调控.利用扫描电子显微镜对不同条件下制备的ZnO纳米棒阵列材料的形貌进行表征,探究生长温度对阵列参数的影响.采用X射线衍射仪、荧光分光光度计、紫外-可见-近红外光谱仪对ZnO纳米棒阵列的晶体结构及光学特性进行分析.结果表明:低温水溶液法制备的ZnO纳米棒阵列结构具有较好的晶体品质、较高的透过率及较好的陷光效果.与2种材料(未制绒的裸硅片、仅有SiNx减反射层的硅片)的表面相比,陷光结构硅的表面反射率有较大幅度的降低.将该陷光结构材料应用于未制绒且镀有SiNx减反射层的单晶硅太阳能电池,与裸硅表面材料的太阳能电池相比,该电池的短路电流密度及转换效率分别提高了30.19%和33.87%.该陷光结构材料具有较好的陷光效果,且易于通过调控生长条件对其陷光效果进行优化.
  • 图  1  电池结构示意图

    Figure  1.  The schematic diagram of sc-Si solar cell

    图  2  不同制备温度下ZnO纳米棒阵列的SEM图

    Figure  2.  The SEM images of ZnO nanorod arrays synthesized under different temperatures

    图  3  不同制备温度下ZnO纳米棒阵列的XRD谱

    Figure  3.  The XRD patterns of ZnO nanorod arrays synthesized under different temperatures

    图  4  不同制备温度下ZnO纳米棒阵列材料的荧光光谱

    Figure  4.  The PL spectra of ZnO nanorod arrays synthesized under different temperatures

    图  5  不同制备温度下ZnO纳米棒阵列材料的透射光谱

    Figure  5.  The transmittance spectra of ZnO nanorod arrays synthesized under different temperatures

    图  6  不同sc-Si太阳能电池材料表面样品的紫外-可见-近红外漫反射光谱

    Figure  6.  The UV-Vis-NIR diffuse reflectance spectra of sc-Si solar cells with different surface conditions

    图  7  不同表面处理的单晶硅太阳能电池外量子效率

    Figure  7.  The EQE characteristics of sc-Si solar cells with different surface conditions

    图  8  不同表面处理材料的单晶硅太阳能电池J-V特性曲线

    Figure  8.  The J-V characteristics of sc-Si solar cells with diffe-rent surface conditions

    表  1  不同表面处理的单晶硅太阳能电池性能参数

    Table  1.   The device characteristics of the sc-Si solar cells with different surface conditions

    表面处理 Voc/V Jsc /(mA·cm-2) FF/% η/%
    未制绒硅片 0.614 25.70 78.48 12.40
    SiNx 0.625 30.71 79.04 15.17
    SiNx/ZnO NARs (85 ℃) 0.622 33.46 79.80 16.60
    下载: 导出CSV
  • [1] KAYABASI E, KURT H, CELIK E. Determination of micro sized texturing and nano size etching procedure to enhance optical properties of n-type single crystalline silicon wafer[J]. Journal of Materials Science:Materials in Electronics, 2017, 28:14085-14090. doi: 10.1007/s10854-017-7260-4
    [2] ZHAO J, WANG A, GREEN M A. 24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency silicomn PERL cells on FZ substrates[J]. Progress in Photovoltaics:Research and Applications, 1999, 7:471-474. doi: 10.1002/(SICI)1099-159X(199911/12)7:6<471::AID-PIP298>3.0.CO;2-7
    [3] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 1961, 32(3):510-519. doi: 10.1063/1.1736034
    [4] SINGH P K, KUMAR R, LA L M, et al. Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions[J]. Solar Energy Materials and Solar Cells, 2001, 70:103-113. doi: 10.1016/S0927-0248(00)00414-1
    [5] KUANGY, van LARE M C, VELDHUIZEN L W, et al. Efficient nanorodbased amorphous silicon solar cells with advanced light trapping[J]. Journal of Applied Physics, 2015, 118:185307/1-9. https://www.researchgate.net/publication/283754070_Efficient_nanorod-based_amorphous_silicon_solar_cells_with_advanced_light_trapping
    [6] NOWAK R E, VEHSE M, SERGEEV O, et al. ZnO nanorod arrays as light trapping structures in amorphous silicon thin-film solar cells[J]. Solar Energy Materials and Solar Cells, 2014, 125:305-309. doi: 10.1016/j.solmat.2013.12.025
    [7] NOWAK R E, VEHSE M, SERGEEV O, et al. ZnO nanorods with broadband antireflective properties for improved light management in silicon thin-film solar cells[J]. Advanced Optical Materials, 2014, 2:94-99. doi: 10.1002/adom.201300455
    [8] SARDANA S K, CHANDRASEKHAR P S, KUMAR R, et al. Efficiency enhancement of silicon solar cells with vertically aligned ZnO nanorod arrays as an antireflective layer[J]. Japanese Journal of Applied Physics, 2017, 56:040305/1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9332809
    [9] DONG W J, HUANG C Y, WEI T X, et al. Nondestructively decorating surface textured silicon with nanorod arrays for enhancing light harvesting[J]. Physica Status Solidi A, 2013, 210:2542-2549. doi: 10.1002/pssa.201330178
    [10] LIU B F, QIU S Y, HU R Y, et al. Multiscaled hierarchical nanostructures for enhancing the conversion efficiency of crystalline silicon solar cells[J]. Applied Surface Science, 2012, 259:705-710. doi: 10.1016/j.apsusc.2012.07.103
    [11] QU Y Z, HUANG X, LI Y Q, et al. Chemical bath deposition produced ZnO nanorod arrays as an antireflective la-yer in the polycrystalline Si solar cells[J]. Journal of Alloys and Compounds, 2017, 698:719-724. doi: 10.1016/j.jallcom.2016.12.265
    [12] CHEN J Y, SUN K W. Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2010, 94:930-934. doi: 10.1016/j.solmat.2010.01.005
    [13] PERANANTHAM P, PARK G H, KIM K, et al. Efficiency enhancement of a single-junction GaAs solar cell with ZnO nanorod arrays as an antireflection layer[J]. Journal of Nanoscience and Nanotechnology, 2017, 17:4279-4282. doi: 10.1166/jnn.2017.13410
    [14] WU C C, WUU D S, LIN P R, et al. Realization and manipulation of ZnO nanorod arrays on sapphire substrates using a catalyst-free metalorganic chemical vapor deposition technique[J]. Journal of Nanoscience and Nanotechnology, 2010, 10:3001-3011. doi: 10.1166/jnn.2010.2171
    [15] WU C C, WUU D S, LIN P R, et al. Three-step growth of wellaligned ZnO nanotube arrays by self-catalyzed metalorganic chemical vapor deposition method[J]. Crystal Growth and Design, 2009, 9:4555-4561. doi: 10.1021/cg900557n
    [16] KAWAKAMI M, HARTANTO A B, NAKATA Y, et al. Synthesis of ZnO nanorods by nanoparticle assisted pulsed-laser deposition[J]. Japanese Journal of Applied Physics, 2003, 42:33-35. doi: 10.1143/JJAP.42.33
    [17] KIM M S, NAM G, LEEM J Y. Photoluminescence studies of ZnO nanorods grown by plasma-assisted molecular beam epitaxy[J]. Journal of Nanoscience and Nanotech-nology, 2013, 13:3582-3585. doi: 10.1166/jnn.2013.7320
    [18] 梁晓韵, 梁威威, 李旭仙, 等.管状铜掺杂ZnO双晶结构材料的形貌控制合成及荧光性质研究[J].华南师范大学学报(自然科学版), 2015, 47(3):45-50. http://d.old.wanfangdata.com.cn/Periodical/hnsfdx201503009

    LIANG X Y, LIANG W W, LI X X, et al. Morphology controlled synthesis and fluorescence properties of tubular Cu-doped ZnO twinned structure materials[J]. Journal of South China Normal University (Natural Science Edition), 2015, 47(3):45-50. http://d.old.wanfangdata.com.cn/Periodical/hnsfdx201503009
    [19] 郎集会, 孙宇婷, 李香兰, 等.稀土Eu掺杂ZnO纳米棒的水热合成及其光学性质[J].华南师范大学学报(自然科学版), 2018, 50(2):25-29. http://d.old.wanfangdata.com.cn/Periodical/hnsfdx201802005

    LANG J H, SUN Y T, LI X L, et al. Hydrothermal synthesis and optical properties of Eu-doped ZnO nanorods[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(2):25-29. http://d.old.wanfangdata.com.cn/Periodical/hnsfdx201802005
    [20] CLOTAIRE C C, MARTINE C G, WANG Y M. Growth mechanism studies of ZnO nanowire arrays via hydrothermal method[J]. Applied Physics A:Materials Science and Process, 2014, 115:953-960. doi: 10.1007/s00339-013-7908-8
    [21] YILMAZ C, UNAL U. Effect of Zn(NO3)2 concentration in hydrothermal-electrochemical deposition on morphology and photoelectrochemical properties of ZnO nanorods[J]. Applied Surface Science, 2016, 368:456-463. doi: 10.1016/j.apsusc.2016.01.253
    [22] YUE S, LU J, ZHANG J. Controlled growth of well-aligned hierarchical ZnO arrays by a wet chemical method[J]. Materials Letters, 2009, 63:2149-2152. doi: 10.1016/j.matlet.2009.06.055
    [23] ROUHI J, ALIMANESH M, DALVAND R, et al. Optical properties of well-aligned ZnO nanostructure arrays synthesized by an electric field-assisted aqueous solution method[J]. Ceramics International, 2014, 40:11193-11198. doi: 10.1016/j.ceramint.2014.03.157
    [24] LV Y Y, ZHANG Z Y, YAN J F, et al. Growth mechanism and photoluminescence property of hydrothermal oriented ZnO nanostructures evolving from nanorods to nanoplates[J]. Journal of Alloys and Compounds, 2017, 718:161-169. doi: 10.1016/j.jallcom.2017.05.075
    [25] WILSON S J, HUTLEY M C. The optical properties of 'moth eye' antireflection surfaces[J]. Optica Acta, 1982, 29:993-1009. doi: 10.1080/713820946
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1735
  • HTML全文浏览量:  668
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-30
  • 刊出日期:  2019-08-25

目录

    /

    返回文章
    返回