留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声微波辅助共沉淀法制备Li1.2Ni0.2Mn0.6O2正极材料及其性能

赵瑞瑞 梁家星 杨子莲 梁昌铖 关熊聪 高爱梅 陈红雨

赵瑞瑞, 梁家星, 杨子莲, 梁昌铖, 关熊聪, 高爱梅, 陈红雨. 超声微波辅助共沉淀法制备Li1.2Ni0.2Mn0.6O2正极材料及其性能[J]. 华南师范大学学报(自然科学版), 2017, 49(2): 6-10. doi: 10.6054/j.jscnun.2017104
引用本文: 赵瑞瑞, 梁家星, 杨子莲, 梁昌铖, 关熊聪, 高爱梅, 陈红雨. 超声微波辅助共沉淀法制备Li1.2Ni0.2Mn0.6O2正极材料及其性能[J]. 华南师范大学学报(自然科学版), 2017, 49(2): 6-10. doi: 10.6054/j.jscnun.2017104
ZHAO Ruirui, LIANG Jiaxing, YANG Zhilian, LIANG Changcheng, CUAN Xiongcong, GAO Aimei, CHEN Hongyu. Synthesis and Investigation of the nanocrystalline Li1.2Ni0.2Mn0.6O2 cathodes for Li-ion batteries by using ultrasonic/microwave-assisted co-precipitation method with different ultrasonic time[J]. Journal of South China normal University (Natural Science Edition), 2017, 49(2): 6-10. doi: 10.6054/j.jscnun.2017104
Citation: ZHAO Ruirui, LIANG Jiaxing, YANG Zhilian, LIANG Changcheng, CUAN Xiongcong, GAO Aimei, CHEN Hongyu. Synthesis and Investigation of the nanocrystalline Li1.2Ni0.2Mn0.6O2 cathodes for Li-ion batteries by using ultrasonic/microwave-assisted co-precipitation method with different ultrasonic time[J]. Journal of South China normal University (Natural Science Edition), 2017, 49(2): 6-10. doi: 10.6054/j.jscnun.2017104

超声微波辅助共沉淀法制备Li1.2Ni0.2Mn0.6O2正极材料及其性能

doi: 10.6054/j.jscnun.2017104
基金项目: 

教育部;广东省发展改革委员会;华南师范大学青年教师培养基金;高等学校博士学科点专项科研基金

详细信息
    通讯作者:

    梁家星

  • 中图分类号: O64

Synthesis and Investigation of the nanocrystalline Li1.2Ni0.2Mn0.6O2 cathodes for Li-ion batteries by using ultrasonic/microwave-assisted co-precipitation method with different ultrasonic time

  • 摘要: 通过超声微波共沉淀法制备一系列纳米正极材料Li1.2Ni0.2Mn0.6O2。通过X射线衍射,扫描电镜,X射线光电子能谱和电化学方法研究超声时间对合成材料的影响。结果表明反应时间为2h时,材料表现出最优异的电化学性能,其在0.1C和2C倍率下的容量分别为265mAh.g-1 和180mAh.g-1。材料优异的电化学性能取决于其均一的颗粒粒径,理想的元素分布和高反应活性的氧化还原电对。超声微波系统可以在富锂材料的实际生产中起到良好的辅助作用,它使用方便,且能够节约时间。
  • [1]M.M. Trackeray, C.S. Johnson, J.T. Vaughey, et al. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries [J]. J. Mater. Chem. 15 (2005) 2257-2267. DOI: 10.1039/B417616M
    [2]M.M. Trackeray, S.H. Kang, C.S. Johnson, et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion Batteries [J].J. Mater. Chem. 17 (2007) 3112-3125. DOI: 10.1039/b702425h
    [3]C.S. Johnson, J.S. Kim, C. Lefief, et al. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3?(1-x)LiMn0.5Ni0.5O2 electrode[J]. Electrochem.Commun.6(2004)1085-1091. DOI:10.1016/j.elecom.2004.08.002
    [4]D.K. Lee, S. H. Park, K. Amine, et al. High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method [J]. J. Power Sources, 162 (2006) 1346-1350. DOI:10.1016/j.jpowsour.2006.07.064
    [5]F. Wu, X.X. Zhang, T.L. Zhao, et al. Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries [J].ACS Appl. Mater. Interfaces 7 (2015) 3773-3781. DOI: 10.1021/am508579r
    [6]J. Ma, B. Li, L. An, et al. A highly homogeneous nanocoating strategy for Li-rich Mn-based layered oxides based on chemical conversion [J]. J. Power Sources 277 (2015) 393-402.DOI:10.1016/j.jpowsour.2014.11.133
    [7]T.L. Zhao, S. Chen, R.J. Chen, et al. The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 for lithium-ion batteries.[J].ACS Appl. Mater. Interfaces 6 (2014), 21711-21720.DOI: 10.1021/am506934j
    [8]M. Y. Hou, J.L. Liu, S.S. Guo,et al. Enhanced electrochemical performance of Li-rich layered cathode materials by surface modification with P2O5[J]. Electrochem. Commun. 49 (2014) 83-87. DOI:10.1016/j.elecom.2014.10.009
    [9]D.H. Cho, H. Yashiro, Y.K. Sun, et al. Electrochemical Properties of Polyaniline-Coated Li-Rich Nickel Manganese Oxide and Role of Polyaniline Coating Layer[J]. J. Electrochem. Soc. 161 (2014) A142-A148. DOI: 10.1149/2.073401jes
    [10]I.T. Kim, J. C. Knight, H. Celio,et al. Enhanced electrochemical performances of Li-rich layered oxides by surface modification with reduced graphene oxide/AlPO4 hybrid coating [J]. J. Mater. Chem. A2 (2014) 8696-8704. DOI: 10.1039/C4TA00898G
    [11]Y.K. Sun, M.G. Kim, S.H. Kang,et al. Electrochemical performance of layered Li[Li0.15Ni0.2752xMgxMn0.575]O2 cathode materials for lithium secondary batteries [J]. J. Mater. Chem. 13 (2003) 319-322. DOI: 10.1039/B209379K
    [12]C.W. Lee, Y.K. Sun, J. Prakash. A novel layered Li [Li0.12NizMg0.32?zMn0.56]O2 cathode material for lithium-ion batteries. [J]. Electrochim. Acta 49 (2004) 4425-4432.DOI:10.1016/j.electacta.2004.04.033
    [13] S.H. Kang, J. Kim, M. E. Stoll, et al. Layered Li(Ni0.5?xMn0.5?xM2x′)O2 (M′=Co, Al, Ti; x=0, 0.025) cathode materials for Li-ion rechargeable batteries. [J]. J. Power Sources 112 (2002) 41-48. DOI:10.1016/S0378-7753(02)00360-9
    [14]C. J. Jafta, K. I. Ozoemena, M. K. Mathe,et al. Synthesis, characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery [J].Electrochim. Acta 85 (2012) 411-422. DOI:10.1016/j.electacta.2012.08.074
    [15]J. Wilcox, S. Patoux, M. Doeff. Structure and Electrochemistry of LiNi1/3Co1/3-yMyMn1/3O2 (M=Ti, Al, Fe) Positive Electrode Materials. [J]. J. Electrochem. Soc. 156 (2009) A192-A198. DOI:10.1149/1.3056109
    [16]L. Li, B.H. Song, Y.L. Chang,et al. Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material[J]. J. Power Sources 283 (2015) 162-170. DOI:10.1016/j.jpowsour.2015.02.085
    [17]Z.H. Lu, J. R. Dahn. Understanding the Anomalous Capacity of Li / Li [ Ni x Li ( 1 / 3 ? 2x / 3 ) Mn ( 2 / 3 ? x / 3 ) ] O 2 Cells Using In Situ X-Ray Diffraction and Electrochemical Studies[J]. J. Electrochem. Soc. 149 (2002) A815-A822. DOI:10.1149/1.1480014
    [18]M.G. Kim, M. Jo, Y.S. Hong, et al. Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode [J].Chem. Commun. 2 (2009) 218-220. DOI: 10.1039/b815378g
    [19]R.R. Zhao, Z.J. Chen, Y. Zhang, et al. Ultrasonic/microwave-assisted co-precipitation method in the synthesis of Li1.1Mn0.433Ni0.233Co0.233O2 cathode material for lithium-ion batteries[J].Mater. Lett. 136 (2014) 160-163. DOI:10.1016/j.matlet.2014.08.060
    [20]R.R. Zhao, I.M. Hung, Y.T. Li, et al. Synthesis and properties of Co-doped LiFePO4 as cathode material via a hydrothermal route for lithium-ion batteries [J] J.Alloys Compd. 513 (2012) 282-288. DOI:10.1016/j.jallcom.2011.10.037
    [21]I. Belharouak, G.M. Koenig Jr., J. Ma, et al. Identification of LiNi0.5Mn1.5O4 spinel in layered manganese enriched electrode materials [J].Electrochem. Commun. 13 (201) 232-236. DOI:10.1016/j.elecom.2010.12.021
    [22]L.J. Zhang, B.R. Wu, N. Li, et al. Rod-like hierarchical nano/micro Li1.2Ni0.2Mn0.6O2 as high performance cathode materials for lithium-ion batteries. [J].J. Power Sources, 240 (2013) 644-652. DOI:10.1016/j.jpowsour.2013.05.019

    [1]M.M. Trackeray, C.S. Johnson, J.T. Vaughey, et al. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries [J]. J. Mater. Chem. 15 (2005) 2257-2267. DOI: 10.1039/B417616M
    [2]M.M. Trackeray, S.H. Kang, C.S. Johnson, et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion Batteries [J].J. Mater. Chem. 17 (2007) 3112-3125. DOI: 10.1039/b702425h
    [3]C.S. Johnson, J.S. Kim, C. Lefief, et al. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3?(1-x)LiMn0.5Ni0.5O2 electrode[J]. Electrochem.Commun.6(2004)1085-1091. DOI:10.1016/j.elecom.2004.08.002
    [4]D.K. Lee, S. H. Park, K. Amine, et al. High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method [J]. J. Power Sources, 162 (2006) 1346-1350. DOI:10.1016/j.jpowsour.2006.07.064
    [5]F. Wu, X.X. Zhang, T.L. Zhao, et al. Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries [J].ACS Appl. Mater. Interfaces 7 (2015) 3773-3781. DOI: 10.1021/am508579r
    [6]J. Ma, B. Li, L. An, et al. A highly homogeneous nanocoating strategy for Li-rich Mn-based layered oxides based on chemical conversion [J]. J. Power Sources 277 (2015) 393-402.DOI:10.1016/j.jpowsour.2014.11.133
    [7]T.L. Zhao, S. Chen, R.J. Chen, et al. The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 for lithium-ion batteries.[J].ACS Appl. Mater. Interfaces 6 (2014), 21711-21720.DOI: 10.1021/am506934j
    [8]M. Y. Hou, J.L. Liu, S.S. Guo,et al. Enhanced electrochemical performance of Li-rich layered cathode materials by surface modification with P2O5[J]. Electrochem. Commun. 49 (2014) 83-87. DOI:10.1016/j.elecom.2014.10.009
    [9]D.H. Cho, H. Yashiro, Y.K. Sun, et al. Electrochemical Properties of Polyaniline-Coated Li-Rich Nickel Manganese Oxide and Role of Polyaniline Coating Layer[J]. J. Electrochem. Soc. 161 (2014) A142-A148. DOI: 10.1149/2.073401jes
    [10]I.T. Kim, J. C. Knight, H. Celio,et al. Enhanced electrochemical performances of Li-rich layered oxides by surface modification with reduced graphene oxide/AlPO4 hybrid coating [J]. J. Mater. Chem. A2 (2014) 8696-8704. DOI: 10.1039/C4TA00898G
    [11]Y.K. Sun, M.G. Kim, S.H. Kang,et al. Electrochemical performance of layered Li[Li0.15Ni0.2752xMgxMn0.575]O2 cathode materials for lithium secondary batteries [J]. J. Mater. Chem. 13 (2003) 319-322. DOI: 10.1039/B209379K
    [12]C.W. Lee, Y.K. Sun, J. Prakash. A novel layered Li [Li0.12NizMg0.32?zMn0.56]O2 cathode material for lithium-ion batteries. [J]. Electrochim. Acta 49 (2004) 4425-4432.DOI:10.1016/j.electacta.2004.04.033
    [13] S.H. Kang, J. Kim, M. E. Stoll, et al. Layered Li(Ni0.5?xMn0.5?xM2x′)O2 (M′=Co, Al, Ti; x=0, 0.025) cathode materials for Li-ion rechargeable batteries. [J]. J. Power Sources 112 (2002) 41-48. DOI:10.1016/S0378-7753(02)00360-9
    [14]C. J. Jafta, K. I. Ozoemena, M. K. Mathe,et al. Synthesis, characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery [J].Electrochim. Acta 85 (2012) 411-422. DOI:10.1016/j.electacta.2012.08.074
    [15]J. Wilcox, S. Patoux, M. Doeff. Structure and Electrochemistry of LiNi1/3Co1/3-yMyMn1/3O2 (M=Ti, Al, Fe) Positive Electrode Materials. [J]. J. Electrochem. Soc. 156 (2009) A192-A198. DOI:10.1149/1.3056109
    [16]L. Li, B.H. Song, Y.L. Chang,et al. Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material[J]. J. Power Sources 283 (2015) 162-170. DOI:10.1016/j.jpowsour.2015.02.085
    [17]Z.H. Lu, J. R. Dahn. Understanding the Anomalous Capacity of Li / Li [ Ni x Li ( 1 / 3 ? 2x / 3 ) Mn ( 2 / 3 ? x / 3 ) ] O 2 Cells Using In Situ X-Ray Diffraction and Electrochemical Studies[J]. J. Electrochem. Soc. 149 (2002) A815-A822. DOI:10.1149/1.1480014
    [18]M.G. Kim, M. Jo, Y.S. Hong, et al. Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode [J].Chem. Commun. 2 (2009) 218-220. DOI: 10.1039/b815378g
    [19]R.R. Zhao, Z.J. Chen, Y. Zhang, et al. Ultrasonic/microwave-assisted co-precipitation method in the synthesis of Li1.1Mn0.433Ni0.233Co0.233O2 cathode material for lithium-ion batteries[J].Mater. Lett. 136 (2014) 160-163. DOI:10.1016/j.matlet.2014.08.060
    [20]R.R. Zhao, I.M. Hung, Y.T. Li, et al. Synthesis and properties of Co-doped LiFePO4 as cathode material via a hydrothermal route for lithium-ion batteries [J] J.Alloys Compd. 513 (2012) 282-288. DOI:10.1016/j.jallcom.2011.10.037
    [21]I. Belharouak, G.M. Koenig Jr., J. Ma, et al. Identification of LiNi0.5Mn1.5O4 spinel in layered manganese enriched electrode materials [J].Electrochem. Commun. 13 (201) 232-236. DOI:10.1016/j.elecom.2010.12.021
    [22]L.J. Zhang, B.R. Wu, N. Li, et al. Rod-like hierarchical nano/micro Li1.2Ni0.2Mn0.6O2 as high performance cathode materials for lithium-ion batteries. [J].J. Power Sources, 240 (2013) 644-652. DOI:10.1016/j.jpowsour.2013.05.019
  • 加载中
计量
  • 文章访问数:  1300
  • HTML全文浏览量:  137
  • PDF下载量:  223
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-19
  • 修回日期:  2015-12-25
  • 刊出日期:  2017-04-25

目录

    /

    返回文章
    返回