留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水溶液显影环氧乙烷光刻胶的显影条件及机理探索

李岚慧 窦盈莹 水玲玲 李发宏 Robert A. Hayes 周国富

李岚慧, 窦盈莹, 水玲玲, 李发宏, Robert A. Hayes, 周国富. 水溶液显影环氧乙烷光刻胶的显影条件及机理探索[J]. 华南师范大学学报(自然科学版), 2017, 49(1): 40-45. doi: 10.6054/j.jscnun.2017052
引用本文: 李岚慧, 窦盈莹, 水玲玲, 李发宏, Robert A. Hayes, 周国富. 水溶液显影环氧乙烷光刻胶的显影条件及机理探索[J]. 华南师范大学学报(自然科学版), 2017, 49(1): 40-45. doi: 10.6054/j.jscnun.2017052
LI L H, DOU Y Y, SHUI L L, LI F H, R A HAYES, ZHOU G F. Study on the parameters and mechanism of developing process of an aqueous solution developed epoxy resist[J]. Journal of South China normal University (Natural Science Edition), 2017, 49(1): 40-45. doi: 10.6054/j.jscnun.2017052
Citation: LI L H, DOU Y Y, SHUI L L, LI F H, R A HAYES, ZHOU G F. Study on the parameters and mechanism of developing process of an aqueous solution developed epoxy resist[J]. Journal of South China normal University (Natural Science Edition), 2017, 49(1): 40-45. doi: 10.6054/j.jscnun.2017052

水溶液显影环氧乙烷光刻胶的显影条件及机理探索

doi: 10.6054/j.jscnun.2017052
基金项目: 

华南师范大学研究生科研创新基金

详细信息
    通讯作者:

    窦盈莹

  • 中图分类号: TN305.7

Study on the parameters and mechanism of developing process of an aqueous solution developed epoxy resist

  • 摘要: 光刻胶是微纳米加工领域关键的材料之一,主要用于图形转移和蚀刻过程中对基材的保护. 基于水性溶液的光刻工艺可以减少污染,是未来材料发展和工艺改进的方向之一. 本论文针对同一种光刻胶(KMPR),对比有机溶剂和碱性显影液的显影效果,得到最佳水溶液显影液 KOH显影液,探索并得到其显影的较佳浓度范围,通过实验验证和解释温度和浓度的影响.
  • [1] Hayes R A, Feenstra B J, Video-speed electronic paper based on electrowetting[J]. Nature, 2003, 425:383-385. doi:10.1038/nature01988
    [2] Schultz A, Heikenfeld J, Kang H S, et al. 1000:1 Contrast ratio transmissive electrowetting displays[J]. Journal of Display Technology, 2011, 7(11): 583-585. doi: 10.1109/JDT.2011.2160842
    [3] Roques-Carmes T, Hayes R A, Feenstra B J, et al. Liquid behavior inside a reflective display pixel based on electrowetting[J]. J. Appl. Phys., 2004, 95:4389-4396. doi: 10.1063/1.1667595
    [4] Mugele F, Baret J, Electrowetting: from basics to applications[J]. J. Phys.: Condens. Matter, 2005, 17:R705-R774. doi : 10.1088/0953-8984/17/28/R01
    [5] Srinivasan V, Pamula V K, Fair R B, An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids[J]. Lab Chip, 2004, 4:310-315. doi: 10.1039/B403341H
    [6] Li C, Jiang H, Electrowetting-driven variable-focus microlens on flexible surfaces[J]. Appl. Phys. Lett., 2012, 100(23):231105-1-4. doi: 10.1063/1.4726038
    [7] S. Grilli S, L. Miccio L, V. Vespini V, et al. Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates[J]. Optics Express, 2008, 16(11):8084-8093. doi: 10.1364/OE.16.008084
    [8] Smith N R, Hou L, Zhang J, et al. Fabrication and demonstration of electrowetting liquid lens arrays[J]. Display Technology, Journal of, 2009, 5(11):411-413. doi:10.1109/JDT.2009.2027036
    [9] Karuwan C, Sukthang K, Wisitsoraat A, et al. Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip[J]. Talanta, 2011, 84:1384-1389. doi: 10.1016/j.talanta.2011.03.073
    [10] Malic L, Veres T, Tabrizian M, Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization[J]. Biosensors and Bioelectronics, 2009, 24:2218-2224. doi: 10.1016/j.bios.2008.11.031
    [11] Herbertson D L, Evans C R, Shirtcliffe N J, et al. Electrowetting on superhydrophobic SU-8 patterned surfaces[J]. Sensors and Actuators A, 2006, 130-131:189-193. doi:10.1016/j.sna.2005.12.018
    [12] Chang Y, Mohseni K, Bright V M, Fabrication of tapered SU-8 structure and effect of sidewall angle for a variable focus microlens using EWOD[J]. Sensors and Actuators A, 2007, 136:546-553. doi: 10.1016/j.sna.2007.01.009
    [13] 陈瑞峰. 新材料进展[J]. 化学工业, 2014, 32 (4) : 33-35.
    [14] 郑金红,黄志齐,侯宏森. 248 nm 深紫外光刻胶[J]. 感光科学与光化学, 2003, 21 (5) :346-356.
    Zheng J H, Huang Z Q, Hou H S. Evolution and progress of deep UV 248nm photoresists [J]. Photographic Science and Photochemistry, 2003, 21 (5) : 346-356.
    [15] 郑金红. l-Line光刻胶材料的研究进展[J]. 影像科学与光化学, 2012, 30 (2) : 81-90.
    Zheng J H, Evolution and progress of I-Line photoresist materials [J]. Imaging Science and Photochemistry, 2012, 30 (2) : 81-90.
    [16] 许箭,陈力,田凯军,等. 先进光刻胶材料的研究进展[J]. 影像科学与光化学, 2011, 29(6): 417-429
    Xu J, Chen L, Tian K J, et al, Molecular structure of advanced photoresists [J]. Imaging Science and Photochemistry, 2011, 29 (6) : 417-429.
    [17] 朱军, 刘景全, 张金娅, 等. 环氧基紫外负性光刻胶的特性、应用工艺与展望[J]. 高分子材料科学与工程, 2004, 20 (4) : 59-65.
    Zhu J, Liu J Q, Zhang J Y, et al, Synthesis and characterization of polyethylene glycol and cellulose grafted copolymer [J]. Polymer Materials Science and Engineering. 2004, 20 (4) : 59-65.
    [18] Huang J, Kwei T K, Reiser A, On the molecular mechanism of positive novolac resisists. SPIE, 1086, Advances in Resist Technology and Processing VI, 1989, 74-84. doi:10.1117/12.953020
    [19] Hinsberg W D, Gutierrez M L, Effect of developer composition on photoresist performance. SPIE, 469, Advances in Resist Technology 1984, 57-64. doi:10.1117/12.941777
    [20] Templeton M K, Szmanda C R, Zampini A, On the dissolution kinetics of positive photoresists: The secondary structure model. SPIE, 771, Advances in Resist Technology and Processing IV, 1987, 136-147. doi:10.1117/12.940318
    [21] Arcus R A, A membrane model for positive photoresist development. SPIE, 631, Advances in Resist Technology and Processing III, 1986, 124-134. doi: 10.1117/12.963634
    [22] Lauvernier D, Vilcot J, Fran?ois M, et al. Optimization of HSQ resist e-beam processing technique on GaAs material[J]. Microelectronic Engineering, 2004, 75:177-182. doi:10.1016/j.mee.2004.05.002
    [23] Shao J, Zhang S, Liu J, et al. Evaluations of KOH solution as an effective developer for chemical amplified resist UVIII[J]. Microelectronic Engineering, 2014, 130:24-27. doi:10.1016/j.mee.2014.08.014
    [24] Grigorescu A E, van der Krogt M C, Hagen C W, et al. 10 nm lines and spaces written in HSQ, using electron beam lithography[J]. Microelectronic Engineering, 2007, 84:822-824. doi:10.1016/j.mee
    [25] Henderson C L, Tsiartas P C, Simpson L L, et al. Factors affecting the dissolution rate of novolac resins II: Developer composition effects[J]. SPIE, 2724, 481-490. doi: 10.1117/12.241846
    [26] Lee C, Jiang K. KMPR photoresist for fabrication of thick microstructures. Proceedings of the 3rd International Conference, 2007.
    [27] Miller H R, Johnson D W, Mori S, KMPR photoresist process optimization using factorial experimental design[J]. J. Photopolym. Sci., Technol., 2004, 17(5):677-684. doi: 10.2494/photopolymer.17.677
    [28] Reynolds1 M, Elias A, Elliott D G, et al. Variation of thermal and mechanical properties of KMPR due to processing parameters[J]. J. Micromech. Microeng., 2012, 22:125023, 1-7. doi:10.1088/0960-1317/22/12/125023

    [1] Hayes R A, Feenstra B J, Video-speed electronic paper based on electrowetting[J]. Nature, 2003, 425:383-385. doi:10.1038/nature01988
    [2] Schultz A, Heikenfeld J, Kang H S, et al. 1000:1 Contrast ratio transmissive electrowetting displays[J]. Journal of Display Technology, 2011, 7(11): 583-585. doi: 10.1109/JDT.2011.2160842
    [3] Roques-Carmes T, Hayes R A, Feenstra B J, et al. Liquid behavior inside a reflective display pixel based on electrowetting[J]. J. Appl. Phys., 2004, 95:4389-4396. doi: 10.1063/1.1667595
    [4] Mugele F, Baret J, Electrowetting: from basics to applications[J]. J. Phys.: Condens. Matter, 2005, 17:R705-R774. doi : 10.1088/0953-8984/17/28/R01
    [5] Srinivasan V, Pamula V K, Fair R B, An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids[J]. Lab Chip, 2004, 4:310-315. doi: 10.1039/B403341H
    [6] Li C, Jiang H, Electrowetting-driven variable-focus microlens on flexible surfaces[J]. Appl. Phys. Lett., 2012, 100(23):231105-1-4. doi: 10.1063/1.4726038
    [7] S. Grilli S, L. Miccio L, V. Vespini V, et al. Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates[J]. Optics Express, 2008, 16(11):8084-8093. doi: 10.1364/OE.16.008084
    [8] Smith N R, Hou L, Zhang J, et al. Fabrication and demonstration of electrowetting liquid lens arrays[J]. Display Technology, Journal of, 2009, 5(11):411-413. doi:10.1109/JDT.2009.2027036
    [9] Karuwan C, Sukthang K, Wisitsoraat A, et al. Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip[J]. Talanta, 2011, 84:1384-1389. doi: 10.1016/j.talanta.2011.03.073
    [10] Malic L, Veres T, Tabrizian M, Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization[J]. Biosensors and Bioelectronics, 2009, 24:2218-2224. doi: 10.1016/j.bios.2008.11.031
    [11] Herbertson D L, Evans C R, Shirtcliffe N J, et al. Electrowetting on superhydrophobic SU-8 patterned surfaces[J]. Sensors and Actuators A, 2006, 130-131:189-193. doi:10.1016/j.sna.2005.12.018
    [12] Chang Y, Mohseni K, Bright V M, Fabrication of tapered SU-8 structure and effect of sidewall angle for a variable focus microlens using EWOD[J]. Sensors and Actuators A, 2007, 136:546-553. doi: 10.1016/j.sna.2007.01.009
    [13] 陈瑞峰. 新材料进展[J]. 化学工业, 2014, 32 (4) : 33-35.
    [14] 郑金红,黄志齐,侯宏森. 248 nm 深紫外光刻胶[J]. 感光科学与光化学, 2003, 21 (5) :346-356.
    Zheng J H, Huang Z Q, Hou H S. Evolution and progress of deep UV 248nm photoresists [J]. Photographic Science and Photochemistry, 2003, 21 (5) : 346-356.
    [15] 郑金红. l-Line光刻胶材料的研究进展[J]. 影像科学与光化学, 2012, 30 (2) : 81-90.
    Zheng J H, Evolution and progress of I-Line photoresist materials [J]. Imaging Science and Photochemistry, 2012, 30 (2) : 81-90.
    [16] 许箭,陈力,田凯军,等. 先进光刻胶材料的研究进展[J]. 影像科学与光化学, 2011, 29(6): 417-429
    Xu J, Chen L, Tian K J, et al, Molecular structure of advanced photoresists [J]. Imaging Science and Photochemistry, 2011, 29 (6) : 417-429.
    [17] 朱军, 刘景全, 张金娅, 等. 环氧基紫外负性光刻胶的特性、应用工艺与展望[J]. 高分子材料科学与工程, 2004, 20 (4) : 59-65.
    Zhu J, Liu J Q, Zhang J Y, et al, Synthesis and characterization of polyethylene glycol and cellulose grafted copolymer [J]. Polymer Materials Science and Engineering. 2004, 20 (4) : 59-65.
    [18] Huang J, Kwei T K, Reiser A, On the molecular mechanism of positive novolac resisists. SPIE, 1086, Advances in Resist Technology and Processing VI, 1989, 74-84. doi:10.1117/12.953020
    [19] Hinsberg W D, Gutierrez M L, Effect of developer composition on photoresist performance. SPIE, 469, Advances in Resist Technology 1984, 57-64. doi:10.1117/12.941777
    [20] Templeton M K, Szmanda C R, Zampini A, On the dissolution kinetics of positive photoresists: The secondary structure model. SPIE, 771, Advances in Resist Technology and Processing IV, 1987, 136-147. doi:10.1117/12.940318
    [21] Arcus R A, A membrane model for positive photoresist development. SPIE, 631, Advances in Resist Technology and Processing III, 1986, 124-134. doi: 10.1117/12.963634
    [22] Lauvernier D, Vilcot J, Fran?ois M, et al. Optimization of HSQ resist e-beam processing technique on GaAs material[J]. Microelectronic Engineering, 2004, 75:177-182. doi:10.1016/j.mee.2004.05.002
    [23] Shao J, Zhang S, Liu J, et al. Evaluations of KOH solution as an effective developer for chemical amplified resist UVIII[J]. Microelectronic Engineering, 2014, 130:24-27. doi:10.1016/j.mee.2014.08.014
    [24] Grigorescu A E, van der Krogt M C, Hagen C W, et al. 10 nm lines and spaces written in HSQ, using electron beam lithography[J]. Microelectronic Engineering, 2007, 84:822-824. doi:10.1016/j.mee
    [25] Henderson C L, Tsiartas P C, Simpson L L, et al. Factors affecting the dissolution rate of novolac resins II: Developer composition effects[J]. SPIE, 2724, 481-490. doi: 10.1117/12.241846
    [26] Lee C, Jiang K. KMPR photoresist for fabrication of thick microstructures. Proceedings of the 3rd International Conference, 2007.
    [27] Miller H R, Johnson D W, Mori S, KMPR photoresist process optimization using factorial experimental design[J]. J. Photopolym. Sci., Technol., 2004, 17(5):677-684. doi: 10.2494/photopolymer.17.677
    [28] Reynolds1 M, Elias A, Elliott D G, et al. Variation of thermal and mechanical properties of KMPR due to processing parameters[J]. J. Micromech. Microeng., 2012, 22:125023, 1-7. doi:10.1088/0960-1317/22/12/125023
  • 加载中
计量
  • 文章访问数:  1380
  • HTML全文浏览量:  188
  • PDF下载量:  351
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-24
  • 修回日期:  2015-08-06
  • 刊出日期:  2017-02-25

目录

    /

    返回文章
    返回