WZ方法与一类定积分的计算及其推广

陈奕俊

陈奕俊. WZ方法与一类定积分的计算及其推广[J]. 华南师范大学学报(自然科学版), 2011, (3).
引用本文: 陈奕俊. WZ方法与一类定积分的计算及其推广[J]. 华南师范大学学报(自然科学版), 2011, (3).
chen yijun. WZ-method and calculation with generalizations for a kind of definite integrals[J]. Journal of South China Normal University (Natural Science Edition), 2011, (3).
Citation: chen yijun. WZ-method and calculation with generalizations for a kind of definite integrals[J]. Journal of South China Normal University (Natural Science Edition), 2011, (3).

WZ方法与一类定积分的计算及其推广

详细信息
    通讯作者:

    陈奕俊

  • 中图分类号: 

    O172

WZ-method and calculation with generalizations for a kind of definite integrals

More Information
    Corresponding author:

    chen yijun

  • 摘要: 结合WZ理论中的有关结果与留数定理,借助计算机代数系统给出了下列问题的一种解答:已知 ,构造与f(t)本质上不同的函数g(t)、g(t,s) (sS ),使得g(t)=g(t,s) (比如s=1 )且 , ,由此得到了一些新的积分公式,给出了某些已知积分公式的新的简洁的证明,并将其推广.特别地,由此方法重新获得了Cadwell于1947年利用围道积分建立的下列等式: ,而且还给出了它的一个推广.
    Abstract: By the related results of WZ theory and the residue theorem,with the help of computer algebraic system,a kind of solution for the following problem are obtained:for any given ,how to construct functions g(t)、g(t,s) (where sS R ),different from f(t) in essence ,so that g(t)=g(t,s) (e.g. s=1 )and , . From the above result, either some new integral formulas or a simple but new proof for some known integral formulas can be found and generalized.In particular,the identity is proved and generalized,which wad obtained by Cadwell in 1947 by using contour integration.
计量
  • 文章访问数:  1481
  • HTML全文浏览量:  112
  • PDF下载量:  558
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-08
  • 修回日期:  2009-12-06
  • 刊出日期:  2011-08-24

目录

    /

    返回文章
    返回