关于攀援集的一点注记
A note on the scrambled set
-
摘要: 设 (X,f) 是一个动力系统, 其中 X 是一个紧致度量空间, \mapfXX 是一个连续映射. 得到如下结果: (1) 如果 Borel 集 D\subset X 是 f 的一个分布攀援集, 并且存在一个不变概率测度 \mu 使得 \mu(D)0, 那么 \mu 是一个原子测度. (2) 强混合性不能蕴含分布攀援偶对的存在性.Abstract: Let (X,f) be a dynamical system, where X is a compact and metrizable space, f:X\to X is a continuous map. The following conclusions are obtained. (1) if a Borel set D is a distributional scrambled set of f and there exists an invariant probability measure \mu with \mu(D)0, then the invariant probability measure \mu is an atomic measure. (2) There exists a strongly mixing system without distributional pairs.