运用蚁群算法解决物流中心拣货路径问题

熊芳敏, 曾碧卿

熊芳敏, 曾碧卿. 运用蚁群算法解决物流中心拣货路径问题[J]. 华南师范大学学报(自然科学版), 2010, 1(2).
引用本文: 熊芳敏, 曾碧卿. 运用蚁群算法解决物流中心拣货路径问题[J]. 华南师范大学学报(自然科学版), 2010, 1(2).
XIONG fangmin, Bi-qing ZENG. RESOLVING ORDER PICKING TOUR PROBLEMS IN THE DISTRIBUTION CENTER THROUGH ANT COLONY OPTIMIZATION ALGORITHM[J]. Journal of South China Normal University (Natural Science Edition), 2010, 1(2).
Citation: XIONG fangmin, Bi-qing ZENG. RESOLVING ORDER PICKING TOUR PROBLEMS IN THE DISTRIBUTION CENTER THROUGH ANT COLONY OPTIMIZATION ALGORITHM[J]. Journal of South China Normal University (Natural Science Edition), 2010, 1(2).

运用蚁群算法解决物流中心拣货路径问题

详细信息
    通讯作者:

    熊芳敏

  • 中图分类号: 

    TP391

RESOLVING ORDER PICKING TOUR PROBLEMS IN THE DISTRIBUTION CENTER THROUGH ANT COLONY OPTIMIZATION ALGORITHM

More Information
    Corresponding author:

    XIONG fangmin

  • 摘要: 研究了运用蚁群优化算法解决物流中心拣货路径问题,并与传统的基于穿越策略的拣货路径策略做比较.执行结果显示以蚁群优化算法解决物流中心仓储拣货作业,可明显减少拣货路径的距离及拣货时间,提高物流中心的作业效率与服务水平.
    Abstract: The order picking problems in a warehouse of the distribution center through ant colony optimization algorithm (ACO) is studied, which is compared with the traditional picking tours based on the Z-traversal strategy. The results reveal that the ACO can reduce both the picking tour distances and the operation time significantly, thus the operation efficiency and service quality can be improved in a traditional warehouse of the distribution center.
计量
  • 文章访问数:  2421
  • HTML全文浏览量:  96
  • PDF下载量:  1391
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-09-09
  • 修回日期:  2009-11-19
  • 刊出日期:  2010-05-24

目录

    /

    返回文章
    返回