限区间上的时间分数阶电报方程的解析解

黄凤辉

黄凤辉. 限区间上的时间分数阶电报方程的解析解[J]. 华南师范大学学报(自然科学版), 2010, 1(1): 3-3 .
引用本文: 黄凤辉. 限区间上的时间分数阶电报方程的解析解[J]. 华南师范大学学报(自然科学版), 2010, 1(1): 3-3 .
Huang Feng-Hui. ANALYTIC SOLUTION FOR THE TIME-FRACTIONAL TELEGRAPH EQUATION DEFINED IN A BOUNDED DOMAIN[J]. Journal of South China Normal University (Natural Science Edition), 2010, 1(1): 3-3 .
Citation: Huang Feng-Hui. ANALYTIC SOLUTION FOR THE TIME-FRACTIONAL TELEGRAPH EQUATION DEFINED IN A BOUNDED DOMAIN[J]. Journal of South China Normal University (Natural Science Edition), 2010, 1(1): 3-3 .

限区间上的时间分数阶电报方程的解析解

详细信息
    通讯作者:

    黄凤辉

  • 中图分类号: 

    O175.2

ANALYTIC SOLUTION FOR THE TIME-FRACTIONAL TELEGRAPH EQUATION DEFINED IN A BOUNDED DOMAIN

More Information
    Corresponding author:

    Huang Feng-Hui

  • 摘要: 考虑一类时间分数阶电报方程,它是由传统的电报方程推广而来,即时间一阶、二阶导数分别用 α(12,1],2α(1,2]阶Caputo导数代替. 利用空间有限的sine或cosine变换及时间Laplace变换,给出了该方程有限区间上带Dirichlet和Neumann边界条件的两类初边值问题的解析解. 该解由Mittag-Leffler函数的级数形式给出.
    Abstract: In this paper, we discuss the so-called time-fractional telegraph equation. It is a generalization of the classical telegraph equation in case the first- and two-order time derivatives are replaced with Caputo derivatives of order α(12,1],2α(1,2]. By using the spatial finite sine and cosine transform, and the temporal Laplace transform, the existence of the analytic solutions of its initial-boundary problems in a boundedspace domain with Dirichlet and Neumann boundary conditions is derived. The analytic solutions are given in the form of series of the Mittag-Leffler functions.
计量
  • 文章访问数:  2162
  • HTML全文浏览量:  84
  • PDF下载量:  872
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-05-15
  • 修回日期:  2009-10-16
  • 刊出日期:  2010-02-24

目录

    /

    返回文章
    返回