Abstract:
The mean-square dissipativity of the numerical solution for a class of stochastic age-dependent population equations with jumps is discussed. Based on the step length under the condition of limited and unlimited, it is essential for studying the mean-square dissipativity to use backward Euler method and compensated backward Euler method for stochastic age-dependent population equations with jumps. The results show that the compensated backward Euler method is more suitable for solving the mean-square dissipativity about stochastic age-dependent population equations with jumps.