全局性N元F-强混沌系统的一个判据

A Criterion for Generically Strongly \mathcalF-N-chaotic Systems

  • 摘要: 设(X,f)是一个动力系统, 其中X是一个含至少2个点的完备度量空间,f是X上的一个连续自映射. 对给定的 Furstenberg 族F与整数 N\geq2,将F-混沌推广到N元F-混沌. 为此, 对于X的2个非空子集A,B, 借助集对(A,B)的F-往复点来引入F-攀援串的概念, 进而定义N元 F-混沌以及讨论N元F-混沌的一些性质. 最后以 Furstenberg 族理论为主要工具, 给出一个动力系统是全局性N元F-强混沌的一个判据, 并通过例子来阐述它在动力系统中的应用.

     

    Abstract: Chaoticity is a vital property of a dynamical system. For a given Furstenberg family \mathcalF, the notion of \mathcalF-chaos has been introduced in a dynamical system recently. In order to extend it to \mathcalF-N-chaos, \mathcalF-scrambled tuples are defined by means of \mathcalF-reciprocating points for a pair (A,B) of sets. Hence, some properties of \mathcalF-N-chaos are considered similarly. A criterion for generically strongly \mathcalF-N-chaotic systems is obtained by heavy use of the theory of Furstenberg families, and it applications in dynamical systems are given with two examples.

     

/

返回文章
返回