全局性N元F-强混沌系统的一个判据

符和满

符和满. 全局性N元F-强混沌系统的一个判据[J]. 华南师范大学学报(自然科学版), 2017, 49(5): 92-95.
引用本文: 符和满. 全局性N元F-强混沌系统的一个判据[J]. 华南师范大学学报(自然科学版), 2017, 49(5): 92-95.
A Criterion for Generically Strongly F-N-chaotic Systems[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(5): 92-95.
Citation: A Criterion for Generically Strongly F-N-chaotic Systems[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(5): 92-95.

全局性N元F-强混沌系统的一个判据

基金项目: 

广东省自然科学基金项目

详细信息
    通讯作者:

    符和满

  • 中图分类号: O19

A Criterion for Generically Strongly F-N-chaotic Systems

  • 摘要: 设(X,f)是一个动力系统, 其中X是一个含至少2个点的完备度量空间,f是X上的一个连续自映射. 对给定的 Furstenberg 族F与整数 N2,将F-混沌推广到N元F-混沌. 为此, 对于X的2个非空子集A,B, 借助集对(A,B)的F-往复点来引入F-攀援串的概念, 进而定义N元 F-混沌以及讨论N元F-混沌的一些性质. 最后以 Furstenberg 族理论为主要工具, 给出一个动力系统是全局性N元F-强混沌的一个判据, 并通过例子来阐述它在动力系统中的应用.
    Abstract: Chaoticity is a vital property of a dynamical system. For a given Furstenberg family F, the notion of F-chaos has been introduced in a dynamical system recently. In order to extend it to F-N-chaos, F-scrambled tuples are defined by means of F-reciprocating points for a pair (A,B) of sets. Hence, some properties of F-N-chaos are considered similarly. A criterion for generically strongly F-N-chaotic systems is obtained by heavy use of the theory of Furstenberg families, and it applications in dynamical systems are given with two examples.
  • [1]Akin E.Recurrence in topological dynamics: Furstenberg families and Ellis actions[M], New York: Plenum Press, 1997. [2]Fu H M, Xiong J C, Tan F.On distributionally chaotic and null systems[J].J Math Anal Appl, 2011, 375(1):166-173 [3]Huang W, Ye X D.Homeoporphisms with the whole compacta being scrambled sets[J].Ergodic Theory and Dynamical Systems, 2001, 21(1):77-91 [4]Li J.Chaos and Entropy for Interval Maps[J].Journal of Dynamics and Differential Equations, 2011, 23(2):333-352 [5]吕杰, 熊金城, 谭枫.周期吸附系统的分布混沌[J].数学学报, 2008, 51(6):1109-1114 [6]Tan F, Fu H M.On distributional n-chaos[J].Acta Mathematica Scientia, 2014, 34(5):1473-1480 [7]Xiong J C, L\"{u} J, Tan F.Furstenberg Family and Chaos[J].Science in China Series A: Mathematics, 2007, 50(9):1325-1333 [8]Xiong J C, Fu H M, Wang H Y.A class of Furstenberg families and their applications to chaotic dynamics[J].Sci China Math, 2014, 57(4):823-836

    [1]Akin E.Recurrence in topological dynamics: Furstenberg families and Ellis actions[M], New York: Plenum Press, 1997. [2]Fu H M, Xiong J C, Tan F.On distributionally chaotic and null systems[J].J Math Anal Appl, 2011, 375(1):166-173 [3]Huang W, Ye X D.Homeoporphisms with the whole compacta being scrambled sets[J].Ergodic Theory and Dynamical Systems, 2001, 21(1):77-91 [4]Li J.Chaos and Entropy for Interval Maps[J].Journal of Dynamics and Differential Equations, 2011, 23(2):333-352 [5]吕杰, 熊金城, 谭枫.周期吸附系统的分布混沌[J].数学学报, 2008, 51(6):1109-1114 [6]Tan F, Fu H M.On distributional n-chaos[J].Acta Mathematica Scientia, 2014, 34(5):1473-1480 [7]Xiong J C, L\"{u} J, Tan F.Furstenberg Family and Chaos[J].Science in China Series A: Mathematics, 2007, 50(9):1325-1333 [8]Xiong J C, Fu H M, Wang H Y.A class of Furstenberg families and their applications to chaotic dynamics[J].Sci China Math, 2014, 57(4):823-836

计量
  • 文章访问数:  958
  • HTML全文浏览量:  95
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-21
  • 修回日期:  2016-03-21
  • 刊出日期:  2017-10-24

目录

    /

    返回文章
    返回