带变号格林函数的四阶三点边值问题的多个正解的存在性

  • 摘要: 应用~Leggett-Williams~不动点定理研究了四阶三点边值问题 u^(4)(t)=f(t,u(t))\quad ~(t\in 0,1), u'(0)=u''(\eta)=u'''(0)=u(1)=0 多个正解的存在性.~其中~f:0,1\times0,+\infty )\rightarrow0,+\infty)~连续,~\eta\in\frac\sqrt33,1~为常数.~尽管~Green~函数是变号的,~对任意的正整数~m,~该问题~仍有正解且至少有~2m-1~个正解.

     

    Abstract: By applying Leggett-Williams fixed point theorem,the fourth-order three-point boundary value problem is studied: u^(4)(t)=f(t,u(t))\quad ~(t\in 0,1), u'(0)=u''(\eta)=u'''(0)=u(1)=0, where~f:0,1\times0,+\infty )\rightarrow0,+\infty)~is continuous,~\eta\in\frac\sqrt33,1.~The existence of at least~2m-1~positive solutions for arbitrary positive integer m is obtained while the problem has the sign-changing Green's function.

     

/

返回文章
返回