莱克多巴胺新型分子印迹纳米管膜的研究及应用

陈忻, 陈晓刚, 潘嘉慧, 沈国权, 赵亮亮, 梁勇

陈忻, 陈晓刚, 潘嘉慧, 沈国权, 赵亮亮, 梁勇. 莱克多巴胺新型分子印迹纳米管膜的研究及应用[J]. 华南师范大学学报(自然科学版), 2017, 49(4): 39-44.
引用本文: 陈忻, 陈晓刚, 潘嘉慧, 沈国权, 赵亮亮, 梁勇. 莱克多巴胺新型分子印迹纳米管膜的研究及应用[J]. 华南师范大学学报(自然科学版), 2017, 49(4): 39-44.
Fabrication and using of Novel Molecularly Imprinted Polymer Nanotube Membranes of Ractopamine[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(4): 39-44.
Citation: Fabrication and using of Novel Molecularly Imprinted Polymer Nanotube Membranes of Ractopamine[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(4): 39-44.

莱克多巴胺新型分子印迹纳米管膜的研究及应用

基金项目: 

佛山市禅城区产学研专项资金项目

详细信息
    通讯作者:

    梁勇

  • 中图分类号: O652

Fabrication and using of Novel Molecularly Imprinted Polymer Nanotube Membranes of Ractopamine

  • 摘要: 摘要:选取了甲基丙烯酸(MAA)作为功能单体,莱克多巴胺与MAA的比例为1:6. 本实验建立了基于表面引发原子转移自由基聚合 (ATRP), 在阳极氧化铝 (AAO) 膜上合成莱克多巴胺印迹聚合物纳米管膜的方法. 利用扫描电子显微镜 (SEM) 对MIP纳米管膜的形态进行表征, 结果显示, 在AAO表面成功修饰了MIP纳米管膜. 经过一系列的吸附实验, MIP纳米管膜, 相比NIP纳米管膜, 对莱克多巴胺及其类似物有更高的吸附容量和更好的选择性. 本实验建立了MIP纳米管膜萃取与HPLC联用, 针对β2-肾上腺素受体激动剂检测的方法. 莱克多巴胺(RAC)的线性范围是10-1000 μg/L, 克伦特罗(CLEN)、肾上腺素(EP)和多巴胺(DA)的线性范围为100-1000 μg/L, 特布他林(TER)的线性范围是200-1000 μg/L. 检出限的范围在0.074–0.25 μg/L. RSD范围是2.79-4.34%. 此方法成功应用于加标的猪肉样品中β2-肾上腺素受体激动剂的检测, 在两个浓度梯度下的加标回收率分别为86.32%-96.95%和87.84%-95.73%. RSD范围在2.67%-5.72%. 结果表明, 本实验建立的方法能对猪肉样品中β2-肾上腺素受体激动剂实现有效检测.
    Abstract: Abstract: In this paper, methacrylic acid (MAA) was selected as functional monomer and the polymerization rate of ractopamine and MAA was 1:6. A method for the synthesis of ractopamine molecularly imprinted polymer (MIP) nanotube membranes using an anodic alumina oxide (AAO) template by surface-initiated atom transfer radical polymerization (ATRP) was presented. The morphology of MIP nanotube membranes were characterized by scanning electron microscope (SEM). The SEM results showed that ATRP route works well in the formation of MIP nanotubes within AAO template. A series of adsorption experiments revealed that the MIP nanotube membranes showed better extraction capacity and good selectivity than that of non- imprinted polymer (NIP) nanotube membranes for ractopamine and its analogues. In order to evaluate the usability of the MIP nanotube membranes, a methodology by combining MIP nanotube membranes extraction couple with high performance liquid chromatography (HPLC) detection for the determinationof β-agonists in complex samples was developed. The linear ranges were 10–1000 μg/L for ractopamine, 100–1000 μg/L for clenbuterol, epinephrine and dopamine, and 200–1000 μg/L for terbutaline. The detection limits were within the range of 0.074–0.25 μg/L and the RSDs (n=3) were from 2.79% to 4.34%. The method was successfully applied to the analysis of β-agonists in spiked pork samples, The recoveries of all the β-agonists at the two concentration levels were found to be the range of 86.32%-96.95% and 87.84%-95.73%, respectively. The RSDs were within 2.67-5.72 %. The results demonstrated that the proposed method is very suitable for the determination of trace β-agonists in pork samples.
  • [1]Bergen W G, Johnson S E, Skjaerlund D M, et.al. Muscle protein metabolism in finishing pigs fed ractopamine[J].Journal of Animal Science, 1989, 67(9):2255-2262
    [2]Bocca B, Fiori M, Cartoni C, et al.Simultameous determination of Zilpaterol and other beta agonists in calf eye by gas chromatographytandem mass spectrometry[J].Journal of Aoac International, 2003, 86(1):8-14
    [3]Burnett T J, Rodewald J M, Moran J, et al.Determination of Ractopamine in Swine,Bovine,and Turkey Tissues by HPLC with Fluorescence Detection[J].Journal of AOAC International, 2012, 95(4):945-958
    [4]He L M, Su Y J, Zeng Z L, et al.Determination of ractopamine and clenbuterol in feeds by gas chromatography-mass spectrometry[J].Anim Feed Sci Technol, 2007, 132(3-4):316-323
    [5]Shishani E, Chai S C, Jamokha S, et al.Determination of ractopamine in animal tissues by liquid chromatography-fluorescence and liquid chromatography/tandem mass spectrometry[J].Analytica Chimica Acta, 2003, (1-2):137-145
    [6]Jin J, Lai W H, Xiong Y H, et al.Colloidal gold-based immunochromatographic assay for detection of ractopamine in swine urine samples[J].Journal of Biotechnology, 2008, 136:754-754
    [7]Wang S, Liu L, Fang G Z, et al.Molecularly imprinted polymer for the determination of trace ractopamine in pork using SPE followed by HPLC with fluorescence detection[J].Journal of Separation Science, 2009, 32(9):1333-1339
    [8]Tang Y W, Fang G Z, Wang S, et al.Covalent imprinted polymer for selective and rapid enrichment of ractopamine by a noncovalent approach[J].Analytical and Bioanalytical Chemistry, 2011, 401(7):2275-2282
    [9]Kong L J, Pan M F, Fang G Z, et al.An electrochemical sensor for rapid determination of ractopamine based on a molecularly imprinted electrosynthesized o-aminothiophenol film[J].Analytical and Bioanalytical Chemistry, 2012, 404(6):1653-1660
    [10]Wang S, Wei J, Hao T T, et al.Determination of ractopamine in pork by using electrochemiluminescence inhibition method combinedlarly imprinted stir bar sorptive extraction[J].Journal of Electroanalytical Chemistry, 2012, 664:146-146
    [11]Zhang Z M, Tan W, Hu Y L, et al.Simultaneous determination of trace sterols in complicated biological samples by gas chromatography-mass spectrometry coupled with extraction using β-sitosterol magnetic molecularly imprinted polymer beads [J].Journal of Chromtography A, 2011, 1218:4275-4275
    [12]Xu Z G, Hu Y F, Hu Y L, et al.Investigation of ractopamine molecularly imprinted stir bar sorptive extraction and its application for trace analysis of β2-agonists in complex samples[J].Journal of Chromtography A, 2010, 1217(22):3612-3618
    [13]Ding J N, Zhu Y, Yuan N Y, et al.Thermal driving fast fabrication of porous anodic alumina corrosion,passivation,and anodic films[J].Journal of The Electrochemical Society, 2011, 158(12):410-415
    [14]Wang H J, Zhou W H, Yin X F, et al.Template synthesized molecularly imprinted polymer nanotube membranes for chemical separations [J].Journal of The American Chemical Society, 2006, 128:15954-15955
    [15]Yue S, Yan Z S, Shi Y F, et al.Synthesis of zinc oxide nanotubes within ultrathin anodic aluminum oxide membrane by sol-gelmethod [J].Mater Lett, 2013, 98:246-249
    [16]Zhang R, Jiang K M, Chen D L, et al.Indium oxide nanorods and nanowires on porous anodic alumina[J].Mater Lett, 2009, 63(12):1044-1046
    [17]Chen Y H, Shen Y M, Wang S C, et al.Fabrication of one-dimensional ZnO nanotube and nanowire arrays with an anodic alumina oxide template via electrochemical deposition [J].Thin Solid Films, 2014, 570:303-309
    [18]Sun L, Yuan Z G, Gong W B, et al.The mechanism study of trace Cr(VI) removal from water using Fe0 nanorods modified with chitosan in porous anodic alumina [J].Applied Surface Science, 2015, 328:606-606
    [19]Ding G Q, Zheng M J, Xu W L, et al.Fabrication of controllable free-standing ultrathin porous alumina membranes[J].Nanotechnology, 2005, 16(8):1285-1289
    [20]Zhang Z M, Wang Q T, Li G K.Fabrication of novel nanoporous array anodic alumina solid-phase microextraction fiber coating and its potential application for heaspace of biological volatile organic compounds [J].Analytica Chimica Acta, 2012, 727:13-19
    [21]Mehdinia Ali, Zanjani M, Jabbari Ali, et al.Design and synthesis of molecularly imprinted polypyrrole based on nanoreactor SBA-15 for recognition of ascorbic acid[J].Biosens Bioelectron, 2013, 39(1):88-93
    [22]Wei X L, Husson S M.Surface-Grafted, Molecularly Imprinted Polymers Grown from Silica Gel for Chromatographic Separations[J].Industrial Engineering Chemistry Research, 2007, 46:2117-2117
    [23]Li Y, Zhou W H, Yang H H, et al.Grafting of molecularly imprinted polymers from the surface of silica gel particles via reversible addition-fragmentation chain transfer polymerization:A selective sorbent for theophylline [J].Talanta, 2009, 79:141-141
    [24]Wei X L, Li X, Husson S M.Surface Molecular Imprinting by Atom Transfer Radical Polymerization[J].Biomacromolecules, 2005, 6(2):1113-1121
    [25]Li X X, Pan J M, Dai J D, et al.Surface molecular imprinting onto magnetic yeast composites via atom transfer radical polymerization for selective recognition of cefalexin [J].Chemical Engineering Journal, 2012, 198-199:503-511

    [1]Bergen W G, Johnson S E, Skjaerlund D M, et.al. Muscle protein metabolism in finishing pigs fed ractopamine[J].Journal of Animal Science, 1989, 67(9):2255-2262
    [2]Bocca B, Fiori M, Cartoni C, et al.Simultameous determination of Zilpaterol and other beta agonists in calf eye by gas chromatographytandem mass spectrometry[J].Journal of Aoac International, 2003, 86(1):8-14
    [3]Burnett T J, Rodewald J M, Moran J, et al.Determination of Ractopamine in Swine,Bovine,and Turkey Tissues by HPLC with Fluorescence Detection[J].Journal of AOAC International, 2012, 95(4):945-958
    [4]He L M, Su Y J, Zeng Z L, et al.Determination of ractopamine and clenbuterol in feeds by gas chromatography-mass spectrometry[J].Anim Feed Sci Technol, 2007, 132(3-4):316-323
    [5]Shishani E, Chai S C, Jamokha S, et al.Determination of ractopamine in animal tissues by liquid chromatography-fluorescence and liquid chromatography/tandem mass spectrometry[J].Analytica Chimica Acta, 2003, (1-2):137-145
    [6]Jin J, Lai W H, Xiong Y H, et al.Colloidal gold-based immunochromatographic assay for detection of ractopamine in swine urine samples[J].Journal of Biotechnology, 2008, 136:754-754
    [7]Wang S, Liu L, Fang G Z, et al.Molecularly imprinted polymer for the determination of trace ractopamine in pork using SPE followed by HPLC with fluorescence detection[J].Journal of Separation Science, 2009, 32(9):1333-1339
    [8]Tang Y W, Fang G Z, Wang S, et al.Covalent imprinted polymer for selective and rapid enrichment of ractopamine by a noncovalent approach[J].Analytical and Bioanalytical Chemistry, 2011, 401(7):2275-2282
    [9]Kong L J, Pan M F, Fang G Z, et al.An electrochemical sensor for rapid determination of ractopamine based on a molecularly imprinted electrosynthesized o-aminothiophenol film[J].Analytical and Bioanalytical Chemistry, 2012, 404(6):1653-1660
    [10]Wang S, Wei J, Hao T T, et al.Determination of ractopamine in pork by using electrochemiluminescence inhibition method combinedlarly imprinted stir bar sorptive extraction[J].Journal of Electroanalytical Chemistry, 2012, 664:146-146
    [11]Zhang Z M, Tan W, Hu Y L, et al.Simultaneous determination of trace sterols in complicated biological samples by gas chromatography-mass spectrometry coupled with extraction using β-sitosterol magnetic molecularly imprinted polymer beads [J].Journal of Chromtography A, 2011, 1218:4275-4275
    [12]Xu Z G, Hu Y F, Hu Y L, et al.Investigation of ractopamine molecularly imprinted stir bar sorptive extraction and its application for trace analysis of β2-agonists in complex samples[J].Journal of Chromtography A, 2010, 1217(22):3612-3618
    [13]Ding J N, Zhu Y, Yuan N Y, et al.Thermal driving fast fabrication of porous anodic alumina corrosion,passivation,and anodic films[J].Journal of The Electrochemical Society, 2011, 158(12):410-415
    [14]Wang H J, Zhou W H, Yin X F, et al.Template synthesized molecularly imprinted polymer nanotube membranes for chemical separations [J].Journal of The American Chemical Society, 2006, 128:15954-15955
    [15]Yue S, Yan Z S, Shi Y F, et al.Synthesis of zinc oxide nanotubes within ultrathin anodic aluminum oxide membrane by sol-gelmethod [J].Mater Lett, 2013, 98:246-249
    [16]Zhang R, Jiang K M, Chen D L, et al.Indium oxide nanorods and nanowires on porous anodic alumina[J].Mater Lett, 2009, 63(12):1044-1046
    [17]Chen Y H, Shen Y M, Wang S C, et al.Fabrication of one-dimensional ZnO nanotube and nanowire arrays with an anodic alumina oxide template via electrochemical deposition [J].Thin Solid Films, 2014, 570:303-309
    [18]Sun L, Yuan Z G, Gong W B, et al.The mechanism study of trace Cr(VI) removal from water using Fe0 nanorods modified with chitosan in porous anodic alumina [J].Applied Surface Science, 2015, 328:606-606
    [19]Ding G Q, Zheng M J, Xu W L, et al.Fabrication of controllable free-standing ultrathin porous alumina membranes[J].Nanotechnology, 2005, 16(8):1285-1289
    [20]Zhang Z M, Wang Q T, Li G K.Fabrication of novel nanoporous array anodic alumina solid-phase microextraction fiber coating and its potential application for heaspace of biological volatile organic compounds [J].Analytica Chimica Acta, 2012, 727:13-19
    [21]Mehdinia Ali, Zanjani M, Jabbari Ali, et al.Design and synthesis of molecularly imprinted polypyrrole based on nanoreactor SBA-15 for recognition of ascorbic acid[J].Biosens Bioelectron, 2013, 39(1):88-93
    [22]Wei X L, Husson S M.Surface-Grafted, Molecularly Imprinted Polymers Grown from Silica Gel for Chromatographic Separations[J].Industrial Engineering Chemistry Research, 2007, 46:2117-2117
    [23]Li Y, Zhou W H, Yang H H, et al.Grafting of molecularly imprinted polymers from the surface of silica gel particles via reversible addition-fragmentation chain transfer polymerization:A selective sorbent for theophylline [J].Talanta, 2009, 79:141-141
    [24]Wei X L, Li X, Husson S M.Surface Molecular Imprinting by Atom Transfer Radical Polymerization[J].Biomacromolecules, 2005, 6(2):1113-1121
    [25]Li X X, Pan J M, Dai J D, et al.Surface molecular imprinting onto magnetic yeast composites via atom transfer radical polymerization for selective recognition of cefalexin [J].Chemical Engineering Journal, 2012, 198-199:503-511

计量
  • 文章访问数:  931
  • HTML全文浏览量:  98
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-16
  • 修回日期:  2016-01-16
  • 刊出日期:  2017-08-24

目录

    /

    返回文章
    返回