THE EQUIVALENCE RELATIONSHIP BETWEEN LI-YORKE Δ-CHAOS AND DISTRIBUTIONAL Δ-CHAOS IN A SEQUENCE
-
摘要: 关注~Li-Yorke~混沌和按序列分布混沌的关系, 指出全体按序列~~分布~-攀援偶对构成的集合为乘积空间中的一个~~集.证明了: (1)~Li-Yorke~-混沌等价于按序列分布~-混沌; (2)~一致混乱集是按某序列分布攀援集; (3)~一类传递系统蕴含了按序列分布混沌.
-
关键词:
- Li-Yorke 混沌 /
- 按序列分布混沌 /
- 传递系统
Abstract: The relationship between Li-Yorke chaos and distributional chaos in a sequence is discussed. It is pointed out that the set of distributional -scramble pairs in a sequence is a set, and Li-Yorke -chaos is equivalent to distributional -chaos in a sequence. A uniformly chaotic set is a distributional scramble set in some sequence and a class of transitive system implies distributional chaos in a sequence. -
-
计量
- 文章访问数: 1866
- HTML全文浏览量: 78
- PDF下载量: 555