关于Li-Yorke Δ-混沌与按序列分布Δ-混沌的等价性

李健, 谭枫

李健, 谭枫. 关于Li-Yorke Δ-混沌与按序列分布Δ-混沌的等价性[J]. 华南师范大学学报(自然科学版), 2010, 1(3): 34-38 .
引用本文: 李健, 谭枫. 关于Li-Yorke Δ-混沌与按序列分布Δ-混沌的等价性[J]. 华南师范大学学报(自然科学版), 2010, 1(3): 34-38 .
THE EQUIVALENCE RELATIONSHIP BETWEEN LI-YORKE Δ-CHAOS AND DISTRIBUTIONAL Δ-CHAOS IN A SEQUENCE[J]. Journal of South China Normal University (Natural Science Edition), 2010, 1(3): 34-38 .
Citation: THE EQUIVALENCE RELATIONSHIP BETWEEN LI-YORKE Δ-CHAOS AND DISTRIBUTIONAL Δ-CHAOS IN A SEQUENCE[J]. Journal of South China Normal University (Natural Science Edition), 2010, 1(3): 34-38 .

关于Li-Yorke Δ-混沌与按序列分布Δ-混沌的等价性

详细信息
    通讯作者:

    李健

  • 中图分类号: 

    O192

THE EQUIVALENCE RELATIONSHIP BETWEEN LI-YORKE Δ-CHAOS AND DISTRIBUTIONAL Δ-CHAOS IN A SEQUENCE

  • 摘要: 关注~Li-Yorke~混沌和按序列分布混沌的关系, 指出全体按序列~Q~分布~δ-攀援偶对构成的集合为乘积空间中的一个~Gδ~集.证明了: (1)~Li-Yorke~δ-混沌等价于按序列分布~δ-混沌; (2)~一致混乱集是按某序列分布攀援集; (3)~一类传递系统蕴含了按序列分布混沌.
    Abstract: The relationship between Li-Yorke chaos and distributional chaos in a sequence is discussed. It is pointed out that the set of distributional δ-scramble pairs in a sequence Q is a Gδ set, and Li-Yorke δ-chaos is equivalent to distributional δ-chaos in a sequence. A uniformly chaotic set is a distributional scramble set in some sequence and a class of transitive system implies distributional chaos in a sequence.
计量
  • 文章访问数:  1866
  • HTML全文浏览量:  78
  • PDF下载量:  555
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-03-09
  • 修回日期:  2009-11-25
  • 刊出日期:  2010-08-24

目录

    /

    返回文章
    返回