Analyzing Spatial Characteristics and Its Influencing Factors of China’s Interprovincial Migration
-
摘要: 采用全国第六次人口普查的省际人口迁移及相关社会经济等数据,首先分析省际迁移人口的空间分布特征,然后利用全局Moran’s I指数考察了省际人口迁移流中的网络自相关性,再构建基于网络自相关的特征向量空间过滤模型对省际人口迁移的动力机制进行分析,并与引力模型的回归结果进行对比验证,揭示网络自相关影响下省际人口迁移的动力机制. 结果表明:(1)省际迁入及净迁入人口主要集中在我国三大经济圈,省际迁出人口主要分布于我国中南部;省际总迁移人口积聚于三大经济圈及中南部地区. (2)省际人口迁入、迁出流存在网络自相关,对人口迁移动力建模时应考虑网络自相关因素.文中加入了网络自相关因素后的特征向量空间过滤模型的拟合水平整体优于引力模型,较成功地揭示了人口迁移流中的网络自相关效应,减少了对其他变量的有偏估计. (3)非网络自相关变量中,人口总量、经济及距离因素对人口迁移活动的影响较大.
-
关键词:
- 特征向量空间过滤模型
Abstract: Using interprovincial migration data from the sixth national census in China and other relevant natural and socioeconomic data, this paper first analyzes the spatial distribution characteristics of interprovincial migration in China, then investigates the network autocorrelation among the interprovincial migration flows with global Moran’s I, and establishes an eigenvector spatial filtering model which takes network autocorrelation into account to explore the influencing factors of the interprovincial migration. Specially, the regression results of the eigenvector spatial filtering model are compared with those of conventional gravity model, and thus the driving mechanism of China’s interprovincial migration is effectively revealed. The results show that: (1) Provinces with high immigration and net immigration are mainly concentrated in China’s three Economy Zone of the Pearl River Delta, Yangtze Delta and Beijing-Tianjin-Hebei regions. Provinces with high out-migration are mainly distributed in provinces of Anhui, Henan, Sichuan and Hunan. Provinces with high total migration are mainly located in the Pearl River Delta, Yangtze Delta, Beijing-Tianjin-Hebei and south central China regions. (2) There exists network autocorrelation phenomenon in China’s interprovincial migration behavior, of which immigration flows and out-migration flows are affected by the neighboring immigration or outmigration flows, thus network autocorrelation should be considered when modeling the driving mechanism of migration. Also, regression results indicate that the eigenvector spatial filtering model incorporating network autocorrelation factors has a better model fit than the gravity model, reveals successfully network autocorrelation effect among the interprovincial migration flows of China and reduces the biased estimation of non-network autocorrelation variables. (3) Among the non-network autocorrelation variables, total population, economy and distance are three important factors that influence the migration behavior.-
Keywords:
- eigenvector spatial filtering model
-
-
[1] Zipf G. K. The hypothesis of the minimum equation as a unifying social principle: with attempted synthesis [J]. American Sociological Review, 1947, 12(6): 627-650.
[2] Curry L. A spatial analysis of gravity flows[J]. Regional Studies, 1972, 6(2): 131-147.
[3] Griffith D A, Jones K G. Explorations into the relationship between spatial structure and spatial interaction [J]. Environment & Planning A, 1980, 12(2): 187-201.
[4] Porojan A. Trade flows and spatial effects: The gravity model revisited [J]. Open Economies Review, 2001, 12(3): 265-280.
[5] Tiefelsdorf M. Misspecifications in interaction model distance decay relations: A spatial structure effect [J]. Journal of Geographical Systems, 2003, 5(1): 25-50.
[6] Black W R. Network autocorrelation in transport network and flow systems[J]. Geographical Analysis, 1992, 24(3): 207-222.
[7] Lesage J P, Pace R K. Spatial econometric modeling of origin-destination Flows[J]. Journal of Regional Science, 2008, 48(5): 941-967.
[8] 于文丽, 蒲英霞, 陈刚, 等. 基于空间自相关的中国省际人口迁移模式与机制分析[J]. 地理与地理信息学, 2012, 28(2): 44-49.
Yu Wenli, Pu Yingxia, Chen Gang, et al. Spatal analysis of the patterns and mechanism of interprovincial migration flows in China [J]. Geography and Geo-Information Science,2012,28(2):44-49.
[9] Griffith D A. Spatial structure and spatial interaction: 25 years later[J]. Review of Regional Studies, 2007, 37(1): 28-38.
[10] Chun Y. Modeling network autocorrelation within migration flows by eigenvector spatial filtering [J]. Journal of Geographical Systems, 2008, 10(4): 317- 344.
[11] Chun Y, Griffith D A. Modeling network autocorrelation in space-time migration flow data: An eigenvector spatial filtering approach [J]. Annals of the Association of American Geographers, 2011, 101(3): 523-536.
[12] Chun Y, Kim H, Kim C. Modeling interregional commodity flows with incorporating network autocorrelation in spatial interaction models: An application of the US interstate commodity flows [J]. Computers, Environment & Urban Systems, 2012, 36(6): 583-591.
[13] Chun Y, Griffith D A. A quality assessment of eigenvector spatial filtering based parameter estimates for the normal probability model [J]. Spatial Statistics, 2014, (10): 1-11.
[14] 顾朝林, 蔡建明, 张伟, 等. 中国大中城市流动人口迁移规律研究[J]. 地理学报, 1999, 54(3): 204-212.
Gu Chaolin, Cai Jianming, Zhang Wei, et al. A study on the patterns of migration in Chinese large and medium cities [J]. Acta Geographica Sinica, 1999, 54(3): 204-212.
[15] 魏星, 王桂新. 中国东、中、西三大地带人口迁移特征分析[J]. 市场与人口分析, 2004, 10(5): 13-22.
Wei Xing, Wang Guixing. Study on inter-area migration characteristics of east China, midland China and west China [J]. Market & Demographic Analysis, 2004, 10(5): 13-22.
[16] 段成荣. 影响我国省际人口迁移的个人特征分析: 兼论“时间”因素在人口迁移研究中的重要性[J]. 人口研究, 2000, 24(4): 14-22.
Duan Chengrong. Individual level determinants of interprovincial in China on the effects of time sequence in migration studies [J]. Population Research, 2000, 24(4):14-22.
[17] 刘建波, 王桂新, 魏星. 基于嵌套Logit模型的中国省际人口二次迁移影响因素分析[J]. 人口研究, 2004, 28(4): 48-56.
Liu Jianbo, Wang Guixin, Wei Xing. Determinants of interprovincial migration in China: nested logit models [J]. Population Research, 2004, 28(4): 48-56.
[18] 王亚平, 蒲英霞, 马劲松, 等. 基于空间OD模型的中国省际人口迁移机制分析[J]. 西北师范大学学报(自然科学版), 2015, 51(3): 89-97.
Wang Yaping, Pu Yingxia, Ma Jinsong, et al. Mechanism analysis of interprovincial migration flows in China based on spatial OD Models[J]. Journal of Northwest Normal University, 2015, 51(3): 89-97.
[19] 马晓冬, 马荣华, 徐建刚. 基于ESDA-GIS的城镇群体空间结构[J]. 地理学报, 2004, 59(6): 1048-1057.
Ma Xiaodong, Ma Ronghua., Xu Jiangang. Spatial structure of cities and towns with ESDA-GIS framework. [J]. Acta Geographica Sinica, 2004, 59(6): 1048-1057.
[20] Thomas S. The Geography of Networks and R&D Collaborations [M]. Switzerland: Springer, 2013: 99-112.
[21] Griffith D A. Spatial Autocorrelation and Spatial Filtering: Gaining Understanding through Theory and Scientific Visualization [M]. New York: Springer, 2003: 91-128.
[22] 李扬, 刘慧, 汤青. 1985-2010年中国省际人口迁移时空格局特征[J]. 地理研究, 2015, 34(6): 1135-1148.
Li Yang, Liu Hui, Tang Qing. Spatial-temporal patterns of China’s interprovincial migration during 1985-2010 [J]. Geographical Research, 2015, 34(6): 1135-1148.
[23] 李薇. 我国省际人口迁移空间模式分析[J]. 人口研究, 2008, 32(4): 82-96.
Li Wei. Analysis of spatial patterns of China’s interprovincial migration [J]. Population Research, 2008, 32(4):82-96.
[24] 丁金宏, 刘振宇, 程丹明, 等. 中国人口迁移的区域差异与流场特征[J]. 地理学报, 2005, 60(1): 106-114.
Ding Jinhong, Liu Zhenyu, Cheng Danming, et al. Areal differentiation of interprovincial migration in China and characteristics of the flow field [J]. Acta Geographica Sinica, 2005, 60(1): 106-114.
[25] 李立宏. 中国人口迁移的影响因素浅析[J]. 西北人口, 2000, (2): 37-40.
Li Lihong. Analysis of the influence factor on migration in China [J]. Northwest Population, 2000, 2(80): 37-40.
[26] 俞路, 张善余. 我国三大都市圈人口迁移态势与影响因素分析[J]. 南方人口, 2005, 20(3): 17-23.
Yu Lu, Zhang Shanyu. The migtation flow and the affecting variables: a case study of the Three Megalopolise of China [J]. South China Population, 2005, 20(3): 17-23.
[27] 马荣华, 蒲英霞, 马晓冬. GIS空间关联模式发现[M]. 北京: 科学出版社, 2007.
Ma Ronghua, Pu Yingxia, Ma Xiaodong. Mining spatial association patterns from GIS database [M]. Beijing: Social Science Edition, 2007.
[28] Kung K S, Bai N, Lee Y. Human capital, migration, and A ‘vent’ for surplus rural labour in 1930s China: The case of the lower Yangzi[J]. Economic History Review, 2011, 64(S1): 117-141.
[29] 蔡昉, 王德文. 作为市场化的人口流动: 第五次全国人口普查数据分析[J]. 中国人口科学, 2003,(5): 11-19.
Cai Fang, Wang Dewen. Migration as marketization: based on the analysis of the Fifth Census data [J]. Chinese Journal of Population Science, 2003, (5): 11-19.
[30] 刘晏伶, 冯建. 中国人口迁移特征及其影响因素: 基于第六次人口普查数据的分析[J]. 人文地理, 2014, (2): 129-137.
Liu Yanling, Feng Jian. Characteristics and impact factors of migration in China: based on the analysis of the Sixth Census data [J]. Human Geography, 2014, (2): 129-137.
[1] Zipf G. K. The hypothesis of the minimum equation as a unifying social principle: with attempted synthesis [J]. American Sociological Review, 1947, 12(6): 627-650.
[2] Curry L. A spatial analysis of gravity flows[J]. Regional Studies, 1972, 6(2): 131-147.
[3] Griffith D A, Jones K G. Explorations into the relationship between spatial structure and spatial interaction [J]. Environment & Planning A, 1980, 12(2): 187-201.
[4] Porojan A. Trade flows and spatial effects: The gravity model revisited [J]. Open Economies Review, 2001, 12(3): 265-280.
[5] Tiefelsdorf M. Misspecifications in interaction model distance decay relations: A spatial structure effect [J]. Journal of Geographical Systems, 2003, 5(1): 25-50.
[6] Black W R. Network autocorrelation in transport network and flow systems[J]. Geographical Analysis, 1992, 24(3): 207-222.
[7] Lesage J P, Pace R K. Spatial econometric modeling of origin-destination Flows[J]. Journal of Regional Science, 2008, 48(5): 941-967.
[8] 于文丽, 蒲英霞, 陈刚, 等. 基于空间自相关的中国省际人口迁移模式与机制分析[J]. 地理与地理信息学, 2012, 28(2): 44-49.
Yu Wenli, Pu Yingxia, Chen Gang, et al. Spatal analysis of the patterns and mechanism of interprovincial migration flows in China [J]. Geography and Geo-Information Science,2012,28(2):44-49.
[9] Griffith D A. Spatial structure and spatial interaction: 25 years later[J]. Review of Regional Studies, 2007, 37(1): 28-38.
[10] Chun Y. Modeling network autocorrelation within migration flows by eigenvector spatial filtering [J]. Journal of Geographical Systems, 2008, 10(4): 317- 344.
[11] Chun Y, Griffith D A. Modeling network autocorrelation in space-time migration flow data: An eigenvector spatial filtering approach [J]. Annals of the Association of American Geographers, 2011, 101(3): 523-536.
[12] Chun Y, Kim H, Kim C. Modeling interregional commodity flows with incorporating network autocorrelation in spatial interaction models: An application of the US interstate commodity flows [J]. Computers, Environment & Urban Systems, 2012, 36(6): 583-591.
[13] Chun Y, Griffith D A. A quality assessment of eigenvector spatial filtering based parameter estimates for the normal probability model [J]. Spatial Statistics, 2014, (10): 1-11.
[14] 顾朝林, 蔡建明, 张伟, 等. 中国大中城市流动人口迁移规律研究[J]. 地理学报, 1999, 54(3): 204-212.
Gu Chaolin, Cai Jianming, Zhang Wei, et al. A study on the patterns of migration in Chinese large and medium cities [J]. Acta Geographica Sinica, 1999, 54(3): 204-212.
[15] 魏星, 王桂新. 中国东、中、西三大地带人口迁移特征分析[J]. 市场与人口分析, 2004, 10(5): 13-22.
Wei Xing, Wang Guixing. Study on inter-area migration characteristics of east China, midland China and west China [J]. Market & Demographic Analysis, 2004, 10(5): 13-22.
[16] 段成荣. 影响我国省际人口迁移的个人特征分析: 兼论“时间”因素在人口迁移研究中的重要性[J]. 人口研究, 2000, 24(4): 14-22.
Duan Chengrong. Individual level determinants of interprovincial in China on the effects of time sequence in migration studies [J]. Population Research, 2000, 24(4):14-22.
[17] 刘建波, 王桂新, 魏星. 基于嵌套Logit模型的中国省际人口二次迁移影响因素分析[J]. 人口研究, 2004, 28(4): 48-56.
Liu Jianbo, Wang Guixin, Wei Xing. Determinants of interprovincial migration in China: nested logit models [J]. Population Research, 2004, 28(4): 48-56.
[18] 王亚平, 蒲英霞, 马劲松, 等. 基于空间OD模型的中国省际人口迁移机制分析[J]. 西北师范大学学报(自然科学版), 2015, 51(3): 89-97.
Wang Yaping, Pu Yingxia, Ma Jinsong, et al. Mechanism analysis of interprovincial migration flows in China based on spatial OD Models[J]. Journal of Northwest Normal University, 2015, 51(3): 89-97.
[19] 马晓冬, 马荣华, 徐建刚. 基于ESDA-GIS的城镇群体空间结构[J]. 地理学报, 2004, 59(6): 1048-1057.
Ma Xiaodong, Ma Ronghua., Xu Jiangang. Spatial structure of cities and towns with ESDA-GIS framework. [J]. Acta Geographica Sinica, 2004, 59(6): 1048-1057.
[20] Thomas S. The Geography of Networks and R&D Collaborations [M]. Switzerland: Springer, 2013: 99-112.
[21] Griffith D A. Spatial Autocorrelation and Spatial Filtering: Gaining Understanding through Theory and Scientific Visualization [M]. New York: Springer, 2003: 91-128.
[22] 李扬, 刘慧, 汤青. 1985-2010年中国省际人口迁移时空格局特征[J]. 地理研究, 2015, 34(6): 1135-1148.
Li Yang, Liu Hui, Tang Qing. Spatial-temporal patterns of China’s interprovincial migration during 1985-2010 [J]. Geographical Research, 2015, 34(6): 1135-1148.
[23] 李薇. 我国省际人口迁移空间模式分析[J]. 人口研究, 2008, 32(4): 82-96.
Li Wei. Analysis of spatial patterns of China’s interprovincial migration [J]. Population Research, 2008, 32(4):82-96.
[24] 丁金宏, 刘振宇, 程丹明, 等. 中国人口迁移的区域差异与流场特征[J]. 地理学报, 2005, 60(1): 106-114.
Ding Jinhong, Liu Zhenyu, Cheng Danming, et al. Areal differentiation of interprovincial migration in China and characteristics of the flow field [J]. Acta Geographica Sinica, 2005, 60(1): 106-114.
[25] 李立宏. 中国人口迁移的影响因素浅析[J]. 西北人口, 2000, (2): 37-40.
Li Lihong. Analysis of the influence factor on migration in China [J]. Northwest Population, 2000, 2(80): 37-40.
[26] 俞路, 张善余. 我国三大都市圈人口迁移态势与影响因素分析[J]. 南方人口, 2005, 20(3): 17-23.
Yu Lu, Zhang Shanyu. The migtation flow and the affecting variables: a case study of the Three Megalopolise of China [J]. South China Population, 2005, 20(3): 17-23.
[27] 马荣华, 蒲英霞, 马晓冬. GIS空间关联模式发现[M]. 北京: 科学出版社, 2007.
Ma Ronghua, Pu Yingxia, Ma Xiaodong. Mining spatial association patterns from GIS database [M]. Beijing: Social Science Edition, 2007.
[28] Kung K S, Bai N, Lee Y. Human capital, migration, and A ‘vent’ for surplus rural labour in 1930s China: The case of the lower Yangzi[J]. Economic History Review, 2011, 64(S1): 117-141.
[29] 蔡昉, 王德文. 作为市场化的人口流动: 第五次全国人口普查数据分析[J]. 中国人口科学, 2003,(5): 11-19.
Cai Fang, Wang Dewen. Migration as marketization: based on the analysis of the Fifth Census data [J]. Chinese Journal of Population Science, 2003, (5): 11-19.
[30] 刘晏伶, 冯建. 中国人口迁移特征及其影响因素: 基于第六次人口普查数据的分析[J]. 人文地理, 2014, (2): 129-137.
Liu Yanling, Feng Jian. Characteristics and impact factors of migration in China: based on the analysis of the Sixth Census data [J]. Human Geography, 2014, (2): 129-137.
计量
- 文章访问数: 1326
- HTML全文浏览量: 180
- PDF下载量: 232