Abstract:
A data acquisition system of the distributed sensing technologies is developed with rapid detection property using FPGA, for slow detection speed of a full-scale detecting of current distributed optical fiber sensing system. With our fast data acquisition system, the time consumption of a full-scale detection is suppressed to be less than ten seconds from 30s or even a few minutes, making it possible for the quasi real-time monitoring. Distributed fiber-optic sensing technology is one of the most promising fiber-optic sensor technologies. Its biggest advantage is the large range and long distance detection. Both of Brillouin and Raman distributed sensing principle and its repeatability, frame structure characteristics of the sensor data are introduced. According to these characteristics, long ring queue of a number of FIFO in FPGA are designed to buffer and average data, for signal noise reduction. Data transfer module based on USB2.0 of CY7C68013A is designed to transfer data to the PC for displaying and storage. Results showed that the design realizes quasi real-time detection, solving the lack of long time and not real-time detection. It greatly increases the performance of distributed optical fiber sensing. The proposed sensing system can be used in monitoring the power line systems, railway, subway tracks, tunnels, dams or landslide, where require real-time monitoring and a large number of sensors.