The theoretical study of microfluidics control driven by thermal microbubbles
-
摘要: 微流控技术是指在微纳米尺度下利用流体的动力学特征,对微粒进行俘获、富集、自组装等微操作的技术.其已发展为一个生物、化学、医学、材料、光学、流体、机械等多学科交叉的崭新研究领域.其中,微热气泡驱动的流体具有优异的可操控性,受到越来越多研究者的关注.本文基于微热气泡的产生机制,结合热力学和流体力学的理论知识,采用COMSOL Multiphysics 4.4数值计算软件,对微热气泡驱动下的流体的流速场进行模拟和定量分析.结果证明,微热气泡表面具有马格兰尼效应,其驱动下的流体以漩涡的方式高效地俘获和富集微粒,与实验现象相符.因此,本文从理论上探究微热气泡驱动下的流速场性质,对提高微流体的可操控性,促进微流控技术的发展都具有重要的意义.
-
关键词:
- 热传导
Abstract: Microfluidics control is the technique that takes advantage of the dynamic characteristics of the fluid under the micro/nano scale and makes microoperation on particles such as trapping, aggregating, self-assembling and so on. It has been a novel study filed of hybrid subjects of biology, chemistry, medicine, materials, optics, fluid and machinery. Microfluidics control driven by thermal microbubbles has excellent controllability and receives an increasing significant attention among the researchers. This paper bases on the generation mechanism of thermal microbubbles and combines the theory of thermodynamics and hydrodynamics. Using the Comsol Multiphysics 4.4 to simulate and quantitative analyze the velocity field of fluid driven by thermal microbubbles. The result turns out that the surface of thermal microbubbles exist marangoni effect and the fluid driven by it can trap and aggregate paricles in the way of vortex efficiently, which is consistent with the experimental phenomenon. In consequence, this paper explores the property of velocity field of fluid driven by thermal microbubbles, which is meaningful for improving the controllability of microfluid and the developing of microfluid control technique.-
Keywords:
- heat conduction
-
-
[1]Hogan J.Lab on a chip: A little goes a long way[J].Nature, 2006, 442(7101):351-352
[2]Whitesides G M.The origins and the future of microfluidics[J].Nature, 2006, 442(7101):368-373
[3] Xing X B, Zheng J P, Li F J, et al.Dynamic behaviors of approximately ellipsoidal microbubbles photothermally generated by agraphene oxide-microheater[J]. Scientific Reports, 2014, 4: 6086.
[4]Fujii S, Kanaizuka K, Toyabe S, et al.Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface[J].Langmuir, 2011, 27(14):8605-8610
[5]Zheng Y J, Liu H, Wang Y, et al.Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble[J].Lab on a Chip, 2011, 11(22):3816-3820
[6]Li Y, Xu L L, Li B J.Gold nanorod-induced localized surface plasmon for microparticle aggregation[J].Applied Physics Lettes, 2012, 101(5):053118-
[7]Namura K, Nakajima K, Kimura K.Photothermally controlled Marangoni flow around a micro bubble[J].Applied Physics Letters, 2015, 106(4):043101-
[8]Yusupov V I, Tsypina S I, Bagratashvili V N.Trapping of nanoparticles in a liquid by laser-induced microbubbles[J].Laser Physics Letters, 2014, 11(11):116001-
[9]Donner J S, Baffou G, McCloskey D, et al.Plasmon-assisted optofluidics[J].Acs Nano, 2011, 5(7):5457-5462
[10]Vela E, Hafez M, Regnier S.Laser-induced thermocapillary convection for mesoscale manipulation[J].International Journal of Optomechatronics, 2009, 3(4):289-302
[11]Basu A S, Gianchandani Y B.Shaping high-speed Marangoni flow in liquid films by microscale perturbations in surface temperature[J].Applied Physics Letters, 2007, 90(3):034102-
[1]Hogan J.Lab on a chip: A little goes a long way[J].Nature, 2006, 442(7101):351-352
[2]Whitesides G M.The origins and the future of microfluidics[J].Nature, 2006, 442(7101):368-373
[3] Xing X B, Zheng J P, Li F J, et al.Dynamic behaviors of approximately ellipsoidal microbubbles photothermally generated by agraphene oxide-microheater[J]. Scientific Reports, 2014, 4: 6086.
[4]Fujii S, Kanaizuka K, Toyabe S, et al.Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface[J].Langmuir, 2011, 27(14):8605-8610
[5]Zheng Y J, Liu H, Wang Y, et al.Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble[J].Lab on a Chip, 2011, 11(22):3816-3820
[6]Li Y, Xu L L, Li B J.Gold nanorod-induced localized surface plasmon for microparticle aggregation[J].Applied Physics Lettes, 2012, 101(5):053118-
[7]Namura K, Nakajima K, Kimura K.Photothermally controlled Marangoni flow around a micro bubble[J].Applied Physics Letters, 2015, 106(4):043101-
[8]Yusupov V I, Tsypina S I, Bagratashvili V N.Trapping of nanoparticles in a liquid by laser-induced microbubbles[J].Laser Physics Letters, 2014, 11(11):116001-
[9]Donner J S, Baffou G, McCloskey D, et al.Plasmon-assisted optofluidics[J].Acs Nano, 2011, 5(7):5457-5462
[10]Vela E, Hafez M, Regnier S.Laser-induced thermocapillary convection for mesoscale manipulation[J].International Journal of Optomechatronics, 2009, 3(4):289-302
[11]Basu A S, Gianchandani Y B.Shaping high-speed Marangoni flow in liquid films by microscale perturbations in surface temperature[J].Applied Physics Letters, 2007, 90(3):034102-
计量
- 文章访问数: 936
- HTML全文浏览量: 115
- PDF下载量: 343