拟单调波轮廓方程组构造上下解的方法

Method of Constructing Upper-Lower Solutions for Wave Profile Systems with Quasi-Monotonicity

  • 摘要: 研究了空间维数n>1情形下对应于拟单调反应扩散系统和积分-偏微分系统的波轮廓方程组. 通过分析主特征值和主特征向量,给出了构造上下解的方法和一些应用例子. 最后,讨论了这个方法应用到具有时滞的反应扩散系统出现的问题.

     

    Abstract: The wave profile systems corresponding to a reaction-diffusion system and an integro-partial differential system with n (>1) equations and quasi-monotonicity are considered. By analyzing the principal eigen-value and eigen-vector, a constructing method of upper-lower solutions for the wave profile systems is given. Some examples to illustrate the applications of our method are given. At last, a brief discussion for the application of this method to the reaction-diffusion system with delay is given.

     

/

返回文章
返回