星云湖富营养化进程的神经网络模拟及污染控制对策研究

黄少峰, 刘威, 王旭涛, 黄迎艳

黄少峰, 刘威, 王旭涛, 黄迎艳. 星云湖富营养化进程的神经网络模拟及污染控制对策研究[J]. 华南师范大学学报(自然科学版), 2013, 45(5).
引用本文: 黄少峰, 刘威, 王旭涛, 黄迎艳. 星云湖富营养化进程的神经网络模拟及污染控制对策研究[J]. 华南师范大学学报(自然科学版), 2013, 45(5).
Neural network modeling of the eutrophication and strategy of pollution control in Lake Xingyun[J]. Journal of South China Normal University (Natural Science Edition), 2013, 45(5).
Citation: Neural network modeling of the eutrophication and strategy of pollution control in Lake Xingyun[J]. Journal of South China Normal University (Natural Science Edition), 2013, 45(5).

星云湖富营养化进程的神经网络模拟及污染控制对策研究

基金项目: 

公益性行业科研专项

详细信息
    通讯作者:

    黄少峰

Neural network modeling of the eutrophication and strategy of pollution control in Lake Xingyun

  • 摘要: 以星云湖为研究对象,通过多年水生态监测数据筛选出富营养化的关键因子,利用BP神经网络模拟叶绿素a与各因子之间的关系,定量分析了叶绿素a的压力响应情况,结果表明:CODMn、TP、TN是富营养化进程中3个关键因子;以0.02mg/L为富营养化湖泊中叶绿素a的控制目标,需分别削减61%的CODMn或77%的TP或20%的TN. 模拟结果显示,星云湖的藻类生长以氮为限制因子. 基于神经网络模拟分析星云湖的富营养化进程,为星云湖水污染控制提供重要的决策依据.
    Abstract: Lake Xingyun was selected as a study object. The key factors of the eutrophication were screened out using PCA, and back-propagate neural network was used to simulate the relation between chlorophyll a and key factors, and the pressure-response effect between chlorophyll a and key factors was quantitatively analyzed. The conclusions are: CODMn, TP and TN were the key factors of the eutrophication. Set 0.02 mg/L as the control target of chlorophyll a, then 61% of CODMn or 77% of TP or 20% of TN should be reduced. This result indicated that N was the limiting factor of the phytoplankton in Lake Xingyun. This simulation of eutrophication provided the basic data for the remediation of Lake Xingyun.
计量
  • 文章访问数:  794
  • HTML全文浏览量:  97
  • PDF下载量:  277
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-27
  • 修回日期:  2013-03-28
  • 刊出日期:  2013-09-24

目录

    /

    返回文章
    返回