用算子\mathcal I_p,\alpha,\beta^\delta,\lambda,l定义的多叶解析函数子类的性质
Properties of subclass of multivalent analytic functions defined by the operator \mathcal I_p,\alpha,\beta^\delta,\lambda,l
-
摘要: 利用算子 \mathcal I_p,\alpha,\beta^\delta,\lambda,lf(z)的性质研究了多叶解析函数子类 \mathcal I_p,\alpha,\beta,\gamma,B^\delta,\lambda,l,\xi,A 的一些性质,得到子类 \mathcal I_p,\alpha,\beta,\gamma,B^\delta,\lambda,l,\xi,A的充分条件、从属关系、包含关系、卷积性质和不等式性质.Abstract: Some properties for a certain subclass \mathcal I_p,\alpha,\beta,\gamma,B^\delta,\lambda,l,\xi,A of multivalent functions defined by the certain operator \mathcal I_p,\alpha,\beta^\delta,\lambda,lf(z) are investigated.Such results as sufficient conditions, subordination relations, inclusion relationships, convoltion properties and inequality properties are proved.