Norm and Essential Norm of Composition Operator on Bergman Space
-
摘要: 用D表示单位圆盘, Ap(D)表示D上的Bergman空间. 设φ是D上的解析自映射. 定义复合算子Cφ: (Cφf)(z)=f(φ(z)). 研究了Ap(D)上复合算子的 KSP 性质. 同时,计算了D上Bergman空间上一些复合算子的范数与本性范数. (C_\varphi f)(z)=f(\varphi(z)) . $$ 作者研究了$A^p(D)$上复合算子的 KSP 性质. 同时, 作者还计算了$D$上Bergman空间上一些复合算子的范数与本性范数.Abstract: Let D be the unit disk, Ap(D) be the Bergman space in D and φ be an analytic self-map of D. The composition operator Cφ is defined as (Cφf)(z)=f(φ(z)). Then the property of KSP of the composition operator on Ap(D) is investigated, and the norm and the essential norm of some composition operators on Bergman spaces on D are calculated.
-
Keywords:
- Composition operator /
- Bergman space /
- Norm /
- Essential Norm
-
-
计量
- 文章访问数: 1785
- HTML全文浏览量: 144
- PDF下载量: 500